Publications by authors named "Vivek Jeevakumar"

Administration of a nitric oxide (NO) donor triggers migraine attacks, but the mechanisms by which this occurs are unknown. Reactive nitroxidative species, including NO and peroxynitrite (PN), have been implicated in nociceptive sensitization, and neutralizing PN is antinociceptive. We determined whether PN contributes to nociceptive responses in two distinct models of migraine headache.

View Article and Find Full Text PDF

Peripheral sensory neurons are characterized by their size, molecular profiles, and physiological responses to specific stimuli. In mouse, the peptidergic and non-peptidergic subsets of nociceptors are distinct and innervate different lamina of the spinal dorsal horn. The unique molecular signature and neuroanatomical organization of these neurons supports a labeled line theory for certain types of nociceptive stimuli.

View Article and Find Full Text PDF

Phosphorylation of the 5' cap-binding protein eIF4E by MAPK-interacting kinases (MNK1/2) is important for nociceptor sensitization and the development of chronic pain. IL-6-induced dorsal root ganglion (DRG) nociceptor excitability is attenuated in mice lacking eIF4E phosphorylation, in MNK1/2 mice, and by the nonselective MNK1/2 inhibitor cercosporamide. Here, we sought to better understand the neurophysiological mechanisms underlying how IL-6 causes nociceptor excitability via MNK-eIF4E signaling using the highly selective MNK inhibitor eFT508.

View Article and Find Full Text PDF

Amphetamine-induced augmentation of striatal dopamine and its blunted release in prefrontal cortex (PFC) is a hallmark of schizophrenia pathophysiology. Although N-methyl-D-aspartate receptor (NMDAR) hypofunction is also implicated in schizophrenia, it remains unclear whether NMDAR hypofunction leads to dopamine release abnormalities. We previously demonstrated schizophrenia-like phenotypes in GABAergic neuron-specific NMDAR hypofunctional mutant mice, in which Ppp1r2-Cre dependent deletion of indispensable NMDAR channel subunit Grin1 is induced in corticolimbic GABAergic neurons including parvalbumin (PV)-positive neurons, in postnatal development, but not in adulthood.

View Article and Find Full Text PDF

Whereas cortical GAD67 reduction and subsequent GABA level decrease are consistently observed in schizophrenia and depression, it remains unclear how these GABAergic abnormalities contribute to specific symptoms. We modeled cortical GAD67 reduction in mice, in which the Gad1 gene is genetically ablated from ~50% of cortical and hippocampal interneurons. Mutant mice showed a reduction of tissue GABA in the hippocampus and cortex including mPFC, and exhibited a cluster of effort-based behavior deficits including decreased home-cage wheel running and increased immobility in both tail suspension and forced swim tests.

View Article and Find Full Text PDF

Glutamate theories of schizophrenia suggest that the disease is associated with a loss of NMDA receptors, specifically on GABAergic parvalbumin-expressing interneurons (PVIs), leading to changes in the excitation-inhibition balance in the prefrontal cortex (PFC). Oxidative stress contributes to the loss of PVI and the development of schizophrenia. Here, we investigated whether the glutathione precursor -acetyl cysteine (NAC) can prevent changes in synaptic transmission at pyramidal cells and PVIs that result from developmental NMDAR blockade and how these changes are related to mitochondrial dysfunction in the PFCs of mice.

View Article and Find Full Text PDF

The -methyl-d-aspartate receptor hypofunction is one of the most prevalent models of schizophrenia. For example, healthy subjects treated with uncompetitive -methyl-d-aspartate receptor antagonists elicit positive, negative, and cognitive-like symptoms of schizophrenia. Patients with anti--methyl-d-aspartate receptor encephalitis, which is likely caused by autoantibody-mediated down-regulation of cell surface -methyl-d-aspartate receptors, often experience psychiatric symptoms similar to schizophrenia initially.

View Article and Find Full Text PDF

Dysfunctions in the GABAergic system are considered a core feature of schizophrenia. Pharmacological blockade of NMDA receptors (NMDAR), or their genetic ablation in parvalbumin (PV)-expressing GABAergic interneurons can induce schizophrenia-like behavior in animals. NMDAR-mediated currents shape the maturation of GABAergic interneurons during a critical period of development, making transient blockade of NMDARs during this period an attractive model for the developmental changes that occur in the course of schizophrenia's pathophysiology.

View Article and Find Full Text PDF

The N-methyl-D-aspartic acid (NMDA)-hypofunction theory of schizophrenia suggests that schizophrenia is associated with a loss of NMDA receptors, specifically on corticolimbic parvalbumin (PV)-expressing GABAergic interneurons, leading to disinhibition of pyramidal cells and cortical desynchronization. However, the presumed changes in glutamatergic inputs onto PV interneurons have not been tested directly. We treated mice with the NMDAR antagonist ketamine during the second postnatal week and investigated persistent cellular changes in the adult medial prefrontal cortex (mPFC) using whole-cell patch-clamp recordings and immunohistochemistry.

View Article and Find Full Text PDF