Female individuals have an increased prevalence of many Th17 cell-mediated diseases, including asthma. Androgen signaling decreases Th17 cell-mediated airway inflammation, and Th17 cells rely on glutaminolysis. However, it remains unclear whether androgen receptor (AR) signaling modifies glutamine metabolism to suppress Th17 cell-mediated airway inflammation.
View Article and Find Full Text PDFInhaled aeroallergens can directly activate airway epithelial cells (AECs). Exposure to cockroach allergens is a strong risk factor for asthma. Cockroach allergens mediate some of their effects through their serine protease activity; protease activity is also a major contributor to allergenicity.
View Article and Find Full Text PDFPAR, a receptor activated by serine proteases, has primarily pro-inflammatory roles in the airways and may play a role in asthma pathogenesis. PAR exerts its effects in the lungs through activation of a variety of airway cells, but also activation of circulating immune cells. There is evidence that PAR expression increases in asthma and other inflammatory diseases, although the regulation of PAR expression is not fully understood.
View Article and Find Full Text PDFWomen have higher prevalence of asthma compared with men. In asthma, allergic airway inflammation is initiated by IL-33 signaling through ST2, leading to increased IL-4, IL-5, and IL-13 production and eosinophil infiltration. Foxp3+ Tregs suppress and ST2+ Tregs promote allergic airway inflammation.
View Article and Find Full Text PDFBackground: Myeloid cells, especially dendritic cells and macrophages, play important roles in asthma pathophysiology. Monocytes (Mo) and macrophages express protease-activated receptor-2 (PAR-2), a proinflammatory serine protease receptor implicated in the pathophysiology of allergic airway inflammation. We have revealed that patients with severe asthma and those with a history of frequent asthma exacerbations exhibit increased PAR-2 expression on peripheral blood monocytes.
View Article and Find Full Text PDFTregs restrain both the innate and adaptive immune systems to maintain homeostasis. Allergic airway inflammation, characterized by a Th2 response that results from a breakdown of tolerance to innocuous environmental antigens, is negatively regulated by Tregs. We previously reported that prostaglandin I2 (PGI2) promoted immune tolerance in models of allergic inflammation; however, the effect of PGI2 on Treg function was not investigated.
View Article and Find Full Text PDFBackground: Allergic asthma is characterized by type 2 inflammation. We have shown the presence of increased type 2 inflammation in patients with severe asthma and those with frequent exacerbations. However, it is not known whether increased type 2 inflammation drives asthma exacerbations.
View Article and Find Full Text PDFBackground: Group 2 innate lymphoid cells (ILC2) are stimulated by IL-33 to increase IL-5 and IL-13 production and airway inflammation. While sex hormones regulate airway inflammation, it remained unclear whether estrogen signaling through estrogen receptor-α (ER-α, Esr1) or ER-β (Esr2) increased ILC2-mediated airway inflammation. We hypothesize that estrogen signaling increases allergen-induced IL-33 release, ILC2 cytokine production, and airway inflammation.
View Article and Find Full Text PDFWomen have increased prevalence of Th17-mediated autoimmune diseases, including lupus and multiple sclerosis, and severe asthma. While estradiol and progesterone increased IL-17A production in Th17 cells by inhibiting miRNA expression and increasing IL-23 receptor (IL-23R) expression, it remained unclear how estrogen signaling through the canonical nuclear receptors, estrogen receptor α (ERα) and/or ERβ, regulated this pathway. We hypothesized that estrogen signaling through ERα increased IL-23R expression and IL-17A production from Th17 cells.
View Article and Find Full Text PDFAllergy Asthma Clin Immunol
April 2019
Background: Asthma is a complex disease with variable course. Efforts to identify biomarkers to predict asthma severity, the course of disease and response to treatment have not been very successful so far. We have previous suggested that PAR-2 and CRTh2 expression on specific peripheral blood cell subtypes may be biomarkers of asthma severity.
View Article and Find Full Text PDFBackground: Protease-Activated Receptor-2 (PAR-2), a G protein coupled receptor activated by serine proteases, is widely expressed in humans and is involved in inflammation. PAR-2 activation in the airways plays an important role in the development of allergic airway inflammation. PAR-2 expression is known to be upregulated in the epithelium of asthmatic subjects, but its expression on immune and inflammatory cells in patients with asthma has not been studied.
View Article and Find Full Text PDFAirway epithelial cells are the first line of defense against the constituents of the inhaled air, which include allergens, pathogens, pollutants, and toxic compounds. The epithelium not only prevents the penetration of these foreign substances into the interstitium, but also senses their presence and informs the organism's immune system of the impending assault. The epithelium accomplishes the latter through the release of inflammatory cytokines and chemokines that recruit and activate innate immune cells at the site of assault.
View Article and Find Full Text PDFHouse dust mite (HDM) allergens are the most prevalent allergens associated with asthma and rhinitis around the world. The mechanisms of allergic sensitization and allergic airway inflammation after exposure to HDM have been studied extensively, but many questions remain unanswered. Airway epithelial cells are the first line of defense against external antigens and are considered an important player in the development of allergic airway inflammation.
View Article and Find Full Text PDF