Publications by authors named "Vivek B Shah"

The unique properties of chlorosomes, arising out of the self-assembled bateriochlorophyll (BChl) c structure, have made them attractive for use in solar cells. In this work, we have demonstrated the self-assembly of BChl c in aerosolized droplets to mimic naturally occurring chlorosomes. We compare two different methods for self-assembly of BChl c, one using a single-solvent and the other using two-solvents, and demonstrate the superiority of the two-solvent method.

View Article and Find Full Text PDF

The thylakoid membrane mainly consists of photosystem I (PSI), photosystem II (PSII) and the cytochrome b6f embedded in a lipid bilayer. PSI and PSII have the ability to capture sunlight and create an electron-hole pair. The study aims at utilizing these properties by using the thylakoid membrane to construct a photo-electrochemical cell.

View Article and Find Full Text PDF

Photosystem I (PSI) from oxygenic photosynthetic organisms is an attractive sensitizer for nano-biohybrid solar cells as it has a combined light-harvesting and reaction center in one protein complex and operates at a quantum yield close to one in biological systems. Using a linker-free deposition technique enabled by an electrospray system, PSI was coupled to 1-D nanostructured titanium dioxide thin films to fabricate an electrode for a photoelectrochemical cell. After deposition, the surfactant in the PSI aggregate was dissolved in the surfactant-free electrolyte, ensuring that partly hydrophobic PSI was not resuspended and stayed in contact with titanium dioxide.

View Article and Find Full Text PDF

Self-assembled photosynthetic molecules have a high extinction coefficient and a broad absorption in the infrared region, and these properties can be used to improve the efficiency of solar cells. We have developed a single-step method for the self-assembly of synthetic chlorin molecules (analogues of native bacteriochlorophylls) in aerosolized droplets, containing a single solvent and two solvents, to synthesize biomimetic light-harvesting structures. In the single-solvent approach, assembly is promoted by a concentration-driven process due to evaporation of the solvent.

View Article and Find Full Text PDF

Photosynthetic organisms have light-harvesting complexes that absorb and transfer energy efficiently to reaction centers. Light-harvesting complexes (LHCs) have received increased attention in order to understand the natural photosynthetic process and also to utilize their unique properties in fabricating efficient artificial and bio-hybrid devices to capture solar energy. In this work, LHCs with different architectures, sizes, and absorption spectra, such as chlorosomes, Fenna-Matthews-Olson (FMO) protein, LH2 complex, and phycobilisome have been characterized by an electrospray-scanning mobility particle-sizer system (ES-SMPS).

View Article and Find Full Text PDF