Publications by authors named "Vitved L"

Background And Objectives: In progressive multiple sclerosis (MS), compartmentalized inflammation plays a pivotal role in the complex pathology of tissue damage. The interplay between epigenetic regulation, transcriptional modifications, and location-specific alterations within white matter (WM) lesions at the single-cell level remains underexplored.

Methods: We examined intracellular and intercellular pathways in the MS brain WM using a novel dataset obtained by integrated single-cell multi-omics techniques from 3 active lesions, 3 chronic active lesions, 3 remyelinating lesions, and 3 control WM of 6 patients with progressive MS and 3 non-neurologic controls.

View Article and Find Full Text PDF

Background: Brazil is home to a multitude of venomous snakes; perhaps the most medically relevant of which belong to the Bothrops genus. Bothrops spp. are responsible for roughly 70% of all snakebites in Brazil, and envenomings caused by their bites can be treated with three types of antivenom: bothropic antivenom, bothro-lachetic antivenom, and bothro-crotalic antivenom.

View Article and Find Full Text PDF

Enterotoxigenic Escherichia coli (ETEC) is a WHO priority pathogen and vaccine target which causes infections in low-income and middle-income countries, travelers visiting endemic regions. The global urgent demand for an effective preventive intervention has become more pressing as ETEC strains have become increasingly multiple antibiotic resistant. However, the vaccine development pipeline has been slow to address this urgent need.

View Article and Find Full Text PDF

The membrane-associated prostasin and matriptase belonging to the S1A subfamily of serine proteases, are critical for epithelial development and maintenance. The two proteases are involved in the activation of each other and are both regulated by the protease inhibitors, HAI-1 and HAI-2. The S1A subfamily of serine proteases are generally produced as inactive zymogens requiring a cleavage event to obtain activity.

View Article and Find Full Text PDF

The membrane-bound serine protease matriptase belongs to a rare subset of serine proteases that display significant activity in the zymogen form. Matriptase is critically involved in epithelial differentiation and homeostasis, and insufficient regulation of its proteolytic activity directly causes onset and development of malignant cancer. There is strong evidence that the zymogen activity of matriptase is sufficient for its biological function(s).

View Article and Find Full Text PDF

Matriptase is a member of the type-II transmembrane serine protease (TTSP) family and plays a crucial role in the development and maintenance of epithelial tissues. As all chymotrypsin-like serine proteases, matriptase is synthesized as a zymogen (proform), requiring a cleavage event for full activity. Recent studies suggest that the zymogen of matriptase possesses enough catalytic activity to not only facilitate autoactivation, but also carry out its functions, which include activating several proteolytic and signaling cascades.

View Article and Find Full Text PDF

The complement component C3 and the cleavage products of C3b/iC3b, C3c and C3d are used as biomarkers in clinical diagnostics. Currently, no specific antibodies are able to differentiate C3d from other fragments, although such a distinction could be very valuable considering that they may reflect different pathophysiological mechanisms. We have developed a rat antihuman C3d monoclonal antibody with specificity to the end sequence of the N-terminal region of C3d.

View Article and Find Full Text PDF

Methicillin-resistant Staphylococcus aureus (MRSA) is a rapidly growing problem, especially in hospitals where MRSA cause increased morbidity and mortality and a significant rise in health expenditures. As many strains of MRSA are resistant to other antimicrobials in addition to methicillin, there is an urgent need to institute non-antimicrobial measures, such as vaccination, against the spread of MRSA. With the aim of finding new protective antigens for vaccine development, this study used a proteome-wide in silico antigen prediction platform to screen the proteome of S.

View Article and Find Full Text PDF

The increasing evidence of the implication of the complement system in the pathogenesis of several diseases has emphasized the need for the development of specific and valid assays, optimized for quantitative detection of complement activation in vivo. In the present study, we have developed a mouse monoclonal antibody (mAb) that is able to detect fluid phase C4c without interference from other products generated from the complement component C4. The C4c specific mAb was tested in different enzyme-linked immunosorbent assay (ELISA) combinations with various types of in vitro activated sera and samples from factor I deficient patients.

View Article and Find Full Text PDF

Protease nexin-1 (PN-1) belongs to the serpin family and is an inhibitor of thrombin, plasmin, urokinase-type plasminogen activator, and matriptase. Recent studies have suggested PN-1 to play important roles in vascular-, neuro-, and tumour-biology. The serpin inhibitory mechanism consists of the serpin presenting its so-called reactive centre loop as a substrate to its target protease, resulting in a covalent complex with the inactivated enzyme.

View Article and Find Full Text PDF

We have isolated a novel type of lectin named Arenicola marina lectin-1 (AML-1) from the lugworm A. marina. The lectin was purified from the coelomic fluid by affinity chromatography on a GlcNAc-derivatized column and eluted with GlcNAc.

View Article and Find Full Text PDF

There is a general need for markers of systemic inflammation in acute or chronic diseases, where complement activation is involved. Available methods to monitor complement activation are elaborate and of low sensitivity; they include haemolytic assays (CH50), quantification of fluid phase terminal complex (C5b-C9) and quantification of complement split products by precipitation-in-gel techniques (e.g.

View Article and Find Full Text PDF

The complement system of fish is generally as complex as in mammals, and in addition Teleost fish often possess several genes encoding different subtypes of a given complement component, such as C3-1, C3-3 and C3-4. Initiators of both the classical (C1) and alternative pathway (factor B) have been characterized in the rainbow trout but so far no molecules of the lectin pathway have been identified. Based on the generally accepted idea of complement evolution, which predicts that the alternative pathway predates the two other pathways, and that the lectin pathway developed before the classical, we set out to characterize members of the lectin pathway in fish.

View Article and Find Full Text PDF

Sodium polyanethole sulfonate (SPS; trade name, Liquoid) is a constituent in culture media used to grow bacteria from blood samples from patients suspected of bacteremia. SPS prevents the killing of bacteria by innate cellular and humoral factors. We analyzed the effect of SPS on the three complement activation pathways: the classical, alternative, and lectin pathways, respectively.

View Article and Find Full Text PDF

The lectin complement pathway has important functions in vertebrate host defence and accumulating evidence of primordial complement components trace its emergence to invertebrate phyla. We introduce two putative mannose-binding lectin homologues (CioMBLs) from the urochordate species Ciona intestinalis. The CioMBLs display similarities with vertebrate MBLs and comprise a collagen-like region, alpha-helical coiled-coils and a carbohydrate recognition domain (CRD) with conserved residues involved in calcium and carbohydrate binding.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the expression of two mRNA isoforms related to the chicken major histocompatibility complex (MHC) in different chicken breeds, focusing on their role in Marek's disease resistance.
  • The research found that MHC haplotypes B21 and B19v1 have varying effects on the mRNA isoforms, with B21 birds exhibiting higher levels of the protective 1.5 kb variant, especially after infection with the Marek's disease virus.
  • Additionally, differences in the 3' untranslated region (UTR) of these isoforms may affect their stability and translation, highlighting the complexity of mRNA regulation in relation to disease resistance.
View Article and Find Full Text PDF

Collectins are part of the innate immune system as they bind nonself glycoconjugates on the surface of microorganisms and inhibit infection by direct neutralization, agglutination or opsonization of the invaders. Conglutinin and CL-43 are serum proteins that have only been found and characterized in Bovidae. We have studied molecular and genomic characteristics of CL-43 to identify polymorphisms that might be associated with disease-susceptible phenotypes or other traits in cattle, and to elucidate how the Bovidae may benefit from possessing additional collectins.

View Article and Find Full Text PDF

Collectins are oligomeric molecules with C-type lectin domains attached to collagen-like regions via alpha-helical neck regions. They bind nonself glycoconjugates on the surface of microorganisms and inhibit infection by direct neutralization, agglutination, or opsonization. During the characterization of the gene encoding bovine CL-43 (43-kDa collectin), we identified a novel collectin-gene.

View Article and Find Full Text PDF

Conglutinin, a collectin found in bovine serum, is an opsonin that binds to glycoconjugates on the surface of microorganisms or on deposited iC3b, and acts in concert with phagocytes to establish a first-line of immune defense. We have isolated a genomic conglutinin phage clone and found that the 5'-flanking region shows 95.8% identity with the sequence previously published, which on the other hand shows 99.

View Article and Find Full Text PDF

We report the cloning of a novel human type I cell surface Ag mainly expressed by macrophages. The primary structure was established by molecular cloning, which yielded a 4579-bp cDNA sequence encoding a polypeptide chain of 1453 amino acid residues with 16 potential N:-glycosylation sites. We designated this molecule M160.

View Article and Find Full Text PDF

Mannose-binding lectin (MBL) participates in the innate immune system as an activator of the complement system and as an opsonin after binding to certain carbohydrate structures on microorganisms. We isolated and characterized cDNA transcripts encoding an MBL homologue from three members of the carp family Cyprinidae, the zebrafish Danio rerio, the goldfish Carassius auratus, and the carp Cyprinus carpio. The carp and zebrafish transcripts contain two polyadenylation sites and RT-PCR on mRNA from carp tissues revealed the carp transcript to be most prominently expressed in the spleen.

View Article and Find Full Text PDF

Surfactant protein D (SP-D) is an oligomeric C type lectin that promotes phagocytosis by binding to microbial surface carbohydrates. A 340-kDa glycoprotein (gp-340) has been shown to bind SP-D in the presence of calcium but does so independently of carbohydrate recognition. This protein exists both in a soluble form and in association with the membranes of alveolar macrophages.

View Article and Find Full Text PDF