Publications by authors named "Vittorio Murino"

In zero-shot learning (ZSL), the task of recognizing unseen categories when no data for training is available, state-of-the-art methods generate visual features from semantic auxiliary information (e.g., attributes).

View Article and Find Full Text PDF

Our brain constantly combines sensory information in unitary percept to build coherent representations of the environment. Even though this process could appear smooth, integrating sensory inputs from various sensory modalities must overcome several computational issues, such as recoding and statistical inferences problems. Following these assumptions, we developed a neural architecture replicating humans' ability to use audiovisual spatial representations.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple sclerosis (MS) is a neurological condition that leads to severe brain damage and changes in brain function, with variations in these effects depending on the MS phase.
  • The study discusses a machine learning system that analyzes resting-state functional connectivity (RS FC) data to differentiate between various MS phenotypes and pinpoint crucial functional connections for identifying disease stages.
  • The framework demonstrated strong classification performance across all MS types and effectively identified significant RS FC changes that aid in accurate phenotype classification.
View Article and Find Full Text PDF

In this paper, we investigate brain activity associated with complex visual tasks, showing that electroencephalography (EEG) data can help computer vision in reliably recognizing actions from video footage that is used to stimulate human observers. Notably, we consider not only typical "explicit" video action benchmarks, but also more complex data sequences in which action concepts are only referred to, implicitly. To this end, we consider a challenging action recognition benchmark dataset-Moments in Time-whose video sequences do not explicitly visualize actions, but only implicitly refer to them (e.

View Article and Find Full Text PDF

Acoustic images are an emergent data modality for multimodal scene understanding. Such images have the peculiarity of distinguishing the spectral signature of the sound coming from different directions in space, thus providing a richer information as compared to that derived from single or binaural microphones. However, acoustic images are typically generated by cumbersome and costly microphone arrays which are not as widespread as ordinary microphones.

View Article and Find Full Text PDF

The relationship between structure and function is of interest in many research fields involving the study of complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help to understand the underlying principles of the operational networks in the brain. To address this issue, this paper proposes a constrained autoregressive model leading to a representation of effective connectivity that can be used to better understand how the structure modulates the function.

View Article and Find Full Text PDF

In state-of-the-art deep single-label classification models, the top- k (k=2,3,4, ...

View Article and Find Full Text PDF

The retina is a complex circuit of the central nervous system whose aim is to encode visual stimuli prior the higher order processing performed in the visual cortex. Due to the importance of its role, modeling the retina to advance in interpreting its spiking activity output is a well studied problem. In particular, it has been shown that latent variable models can be used to model the joint distribution of Retinal Ganglion Cells (RGCs).

View Article and Find Full Text PDF

The increasing presence of robots in society necessitates a deeper understanding into what attitudes people have toward robots. People may treat robots as mechanistic artifacts or may consider them to be intentional agents. This might result in explaining robots' behavior as stemming from operations of the mind (intentional interpretation) or as a result of mechanistic design (mechanistic interpretation).

View Article and Find Full Text PDF

Small object tracking becomes an increasingly important task, which however has been largely unexplored in computer vision. The great challenges stem from the facts that: 1) small objects show extreme vague and variable appearances, and 2) they tend to be lost easier as compared to normal-sized ones due to the shaking of lens. In this paper, we propose a novel aggregation signature suitable for small object tracking, especially aiming for the challenge of sudden and large drift.

View Article and Find Full Text PDF

Heterogeneous data modalities can provide complementary cues for several tasks, usually leading to more robust algorithms and better performance. However, while training data can be accurately collected to include a variety of sensory modalities, it is often the case that not all of them are available in real life (testing) scenarios, where a model has to be deployed. This raises the challenge of how to extract information from multimodal data in the training stage, in a form that can be exploited at test time, considering limitations such as noisy or missing modalities.

View Article and Find Full Text PDF

Can social gaze behavior reveal the leader during real-world group interactions? To answer this question, we developed a novel tripartite approach combining (1) computer vision methods for remote gaze estimation, (2) a detailed taxonomy to encode the implicit semantics of multi-party gaze features, and (3) machine learning methods to establish dependencies between leadership and visual behaviors. We found that social gaze behavior distinctively identified group leaders. Crucially, the relationship between leadership and gaze behavior generalized across democratic and autocratic leadership styles under conditions of low and high time-pressure, suggesting that gaze can serve as a general marker of leadership.

View Article and Find Full Text PDF

In this paper, we present an automated approach for segmenting multiple sclerosis (MS) lesions from multi-modal brain magnetic resonance images. Our method is based on a deep end-to-end 2D convolutional neural network (CNN) for slice-based segmentation of 3D volumetric data. The proposed CNN includes a multi-branch downsampling path, which enables the network to encode information from multiple modalities separately.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on analyzing brain connectivity to improve understanding of brain structure and function, but faces challenges due to the complexity of the data and limited prior knowledge.
  • The authors propose a new method to identify important relationships in brain connections that distinguish between different experimental groups, enabling the discovery of relevant subnetworks.
  • Their approach utilizes advanced machine learning techniques to analyze both functional and structural connectomes, successfully identifying connections related to diseases in various datasets.
View Article and Find Full Text PDF

Sleep science is entering a new era, thanks to new data-driven analysis approaches that, combined with mouse gene-editing technologies, show a promise in functional genomics and translational research. However, the investigation of sleep is time consuming and not suitable for large-scale phenotypic datasets, mainly due to the need for subjective manual annotations of electrophysiological states. Moreover, the heterogeneous nature of sleep, with all its physiological aspects, is not fully accounted for by the current system of sleep stage classification.

View Article and Find Full Text PDF

A novel method is proposed for generic target tracking by audio measurements from a microphone array. To cope with noisy environments characterized by persistent and high energy interfering sources, a classification map (CM) based on spectral signatures is calculated by means of a machine learning algorithm. Next, the CM is combined with the acoustic map, describing the spatial distribution of sound energy, in order to obtain a cleaned joint map in which contributions from the disturbing sources are removed.

View Article and Find Full Text PDF

We present a method for automated spike sorting for recordings with high-density, large-scale multielectrode arrays. Exploiting the dense sampling of single neurons by multiple electrodes, an efficient, low-dimensional representation of detected spikes consisting of estimated spatial spike locations and dominant spike shape features is exploited for fast and reliable clustering into single units. Millions of events can be sorted in minutes, and the method is parallelized and scales better than quadratically with the number of detected spikes.

View Article and Find Full Text PDF

Objective: High-throughput technologies have generated an unprecedented amount of high-dimensional gene expression data. Algorithmic approaches could be extremely useful to distill information and derive compact interpretable representations of the statistical patterns present in the data. This paper proposes a mining approach to extract an informative representation of gene expression profiles based on a generative model called the Counting Grid (CG).

View Article and Find Full Text PDF

Sleep-stage analysis in mice and rats has received growing attention in recent years, due to the fact that mice display electrical activity during sleep which has underlying similarities with that of human sleep. Both conventional manual and automatic sleep-wakefulness scoring are rule based tasks which use brain waves measured by Electroencephalogram (EEG) and activity detected by Electromyography (EMG) of skeletal muscles. Several works have been conducted trying to provide an automatic sleep-scoring system on the basis of machine learning methods.

View Article and Find Full Text PDF

We present a novel probabilistic framework that jointly models individuals and groups for tracking. Managing groups is challenging, primarily because of their nonlinear dynamics and complex layout which lead to repeated splitting and merging events. The proposed approach assumes a tight relation of mutual support between the modeling of individuals and groups, promoting the idea that groups are better modeled if individuals are considered and vice versa.

View Article and Find Full Text PDF

Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter (WM) tracts and to obtain a three-dimensional description of the structural architecture of the brain. However, DMRI tractography methods produce highly multi-dimensional datasets whose interpretation requires advanced analytical tools.

View Article and Find Full Text PDF

The ultimate goal of neuroscience is understanding the brain at a functional level. This requires the investigation of the structural connectivity at multiple scales: from the single-neuron micro-connectomics to the brain-region macro-connectomics. In this work, we address the study of connectomics at the intermediate mesoscale, introducing a probabilistic approach capable of reconstructing complex topologies of large neuronal networks.

View Article and Find Full Text PDF

This paper exploits the embedding provided by the counting grid model and proposes a framework for the classification and the analysis of brain MRI images. Each brain, encoded by a count of local features, is mapped into a window on a grid of feature distributions. Similar sample are mapped in close proximity on the grid and their commonalities in their feature distributions are reflected in the overlap of windows on the grid.

View Article and Find Full Text PDF