Feature selection is essential in the analysis of molecular systems and many other fields, but several uncertainties remain: What is the optimal number of features for a simplified, interpretable model that retains essential information? How should features with different units be aligned, and how should their relative importance be weighted? Here, we introduce the Differentiable Information Imbalance (DII), an automated method to rank information content between sets of features. Using distances in a ground truth feature space, DII identifies a low-dimensional subset of features that best preserves these relationships. Each feature is scaled by a weight, which is optimized by minimizing the DII through gradient descent.
View Article and Find Full Text PDFWe introduce an approach which allows detecting causal relationships between variables for which the time evolution is available. Causality is assessed by a variational scheme based on the Information Imbalance of distance ranks, a statistical test capable of inferring the relative information content of different distance measures. We test whether the predictability of a putative driven system Y can be improved by incorporating information from a potential driver system X, without explicitly modeling the underlying dynamics and without the need to compute probability densities of the dynamic variables.
View Article and Find Full Text PDF