In order to facilitate the prediction of some physical properties, we propose several simple formulas based on two parameters only, the metallic valence and metallic atomic radii. Knowing the composition, for single-phase alloys, the average parameters can be calculated by the rule of mixture. The input parameters can be obtained from tabulated databases.
View Article and Find Full Text PDFThe relationship between the tendencies towards rigidity (measured by shear modulus, ) and hardness (measured by Vickers hardness, ) of early transition metal (ETM)-based refractory high-entropy alloys (RHEA) and bond parameters (i.e., valence electron concentration (), enthalpy of mixing (Δ)) was investigated.
View Article and Find Full Text PDFHigh-density and nanosized deformation twins in face-centered cubic (fcc) materials can effectively improve the combination of strength and ductility. However, the microscopic dislocation mechanisms enabling a high twinnability remain elusive. Twinning usually occurs via continuous nucleation and gliding of twinning partial dislocations on consecutive close-packed atomic planes.
View Article and Find Full Text PDFMaterials (Basel)
February 2022
The hexagonal close-packed (hcp) phase of iron is unstable under ambient conditions. The limited amount of existing experimental data for this system has been obtained by extrapolating the parameters of hcp Fe-Mn alloys to pure Fe. On the theory side, most density functional theory (DFT) studies on hcp Fe have considered non-magnetic or ferromagnetic states, both having limited relevance in view of the current understanding of the system.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2021
The Invar anomaly is one of the most fascinating phenomena observed in magnetically ordered materials. Invariant thermal expansion and elastic properties have attracted substantial scientific attention and led to important technological solutions. By studying planar faults in the high-temperature magnetically disordered state of [Formula: see text], here we disclose a completely different anomaly.
View Article and Find Full Text PDFTetragonal ([Formula: see text]) FeNi is a promising material for high-performance rare-earth-free permanent magnets. Pure tetragonal FeNi is very difficult to synthesize due to its low chemical order-disorder transition temperature ([Formula: see text] K), and thus one must consider alternative non-equilibrium processing routes and alloy design strategies that make the formation of tetragonal FeNi feasible. In this paper, we investigate by density functional theory as implemented in the exact muffin-tin orbitals method whether alloying FeNi with a suitable element can have a positive impact on the phase formation and ordering properties while largely maintaining its attractive intrinsic magnetic properties.
View Article and Find Full Text PDFThe ordered phase of the FeNi system is known for its promising magnetic properties that make it a first-class rare-earth free permanent magnet. Mapping out the parameter space controlling the order-disorder transformation is an important step towards finding growth conditions that stabilize the [Formula: see text] phase of FeNi. In this work, we study the magnetic properties and chemical order-disorder transformation in FeNi as a function of lattice expansion by utilizing ab initio alloy theory.
View Article and Find Full Text PDFSuperelasticity associated with the martensitic transformation has found a broad range of engineering applications. However, the intrinsic hysteresis and temperature sensitivity of the first-order phase transformation significantly hinder the usage of smart metallic components in many critical areas. Here, we report a large superelasticity up to 15.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2019
Using first-principles methods, we investigate the effect of Al on the generalized stacking fault energy of face-centered cubic (fcc) CrMnFeCoNi high-entropy alloy as a function of temperature. Upon Al addition or temperature increase, the intrinsic and extrinsic stacking fault energies increase, whereas the unstable stacking fault and unstable twinning fault energies decrease monotonously. The thermodynamic expression for the intrinsic stacking fault energy in combination with the theoretical Gibbs energy difference between the hexagonal close packed (hcp) and fcc lattices allows one to determine the so-called hcp-fcc interfacial energy.
View Article and Find Full Text PDFThe thermodynamic ordering transformation of tetragonal FeNi system is investigated by the Exact Muffin-Tin Orbitals (EMTO) method. The tetragonal distortion of the unit cell is taken into account and the free energy is calculated as a function of long-range order and includes the configurational, vibrational, electronic and magnetic contributions. We find that both configurational and vibrational effects are important and that the vibrational effect lowers the predicted transformation temperature by about 480 K compared to the value obtained merely from the configurational free energy.
View Article and Find Full Text PDFJ Phys Condens Matter
February 2019
Generalized stacking fault energy (GSFE) is an important parameter for understanding the underlying physics governing the deformation mechanisms in face-centred cubic (fcc) materials. In the present work, we study the long-standing question regarding the influence of C on the GSFE in austenitic steels at paramagnetic state. We calculate the GSFE in both [Formula: see text]-Fe and Fe-C alloys using the exact muffin-tin orbitals method and the Vienna Ab initio Simulation Package.
View Article and Find Full Text PDFRecent developments of high-entropy alloys with high strength and high ductility draw attention to the metastability-engineering strategy. Using first-principle theory, here we demonstrate that reducing the Ta level in the refractory TiZrHfTa system destabilizes the body-centered cubic (bcc) phase and leads to the appearance of the hexagonal close-packed (hcp) phase embedded in the bcc matrix. The alloying-induced features of the elastic parameters for the cubic and hexagonal structures are mapped out in details, and strong sensitivity to the crystal lattice and chemistry is revealed.
View Article and Find Full Text PDFHigh entropy alloys based on 3d transition metals display rich and promising magnetic characteristics for various high-technology applications. Understanding their behavior at finite temperature is, however, limited by the incomplete experimental data for single-phase alloys. Here we use first-principles alloy theory to investigate the magnetic structure of polymorphic CoCrFeMnNi in the paramagnetic state by accounting for the longitudinal spin fluctuations (LSFs) as a function of temperature.
View Article and Find Full Text PDFHigh-entropy alloys offer a promising alternative in several high-technology applications concerning functional, safety and health aspects. Many of these new alloys compete with traditional structural materials in terms of mechanical characteristics. Understanding and controlling their properties are of the outmost importance in order to find the best single- or multiphase solutions for specific uses.
View Article and Find Full Text PDFTwinning is a fundamental mechanism behind the simultaneous increase of strength and ductility in medium- and high-entropy alloys, but its operation is not yet well understood, which limits their exploitation. Since many high-entropy alloys showing outstanding mechanical properties are actually thermodynamically unstable at ambient and cryogenic conditions, the observed twinning challenges the existing phenomenological and theoretical plasticity models. Here, we adopt a transparent approach based on effective energy barriers in combination with first-principle calculations to shed light on the origin of twinning in high-entropy alloys.
View Article and Find Full Text PDFStacking fault energy is one of key parameters for understanding the mechanical properties of face-centered cubic materials. It is well known that the plastic deformation mechanism is closely related to the size of stacking fault energy. Although alloying is a conventional method to modify the physical parameter, the underlying microscopic mechanisms are not yet clearly established.
View Article and Find Full Text PDFBased on first-principle calculations, we have systematically explored the nature of the elastic stability and the δ-δ'-ε phase transitions in pure Pu at high temperature. It is found that, both the electron-phonon coupling and the spin fluctuation effects tend to decrease the tetragonal elastic constant (C') of δ-Pu, accounting for its anomalous softening at high temperature. The lattice thermal expansion together with the electron-phonon coupling can stiffen C' of ε-Pu, promoting its mechanical stability at high temperature.
View Article and Find Full Text PDFIdentifying the forces that drive a phase transition is always challenging. The hcp-fcc phase transition that occurs in cobalt at ~700 K has not yet been fully understood, although early theoretical studies have suggested that magnetism plays a main role in the stabilization of the fcc phase at high temperatures. Here, we perform a first principles study of the free energies of these two phases, which we break into contributions arising from the vibration of the lattice, electronic and magnetic systems and volume expansion.
View Article and Find Full Text PDFSemilocal density functional approximations occupy the second rung of the Jacob's ladder model and are thus expected to have certain limits to their applicability. A recent study [Y. Zhang, G.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2016
The formation energy of the interface between face-centered cubic (fcc) and hexagonal close packed (hcp) structures is a key parameter in determining the stacking fault energy (SFE) of fcc metals and alloys using thermodynamic calculations. It is often assumed that the contribution of the planar fault energy to the SFE has the same order of magnitude as the bulk part, and thus the lack of precise information about it can become the limiting factor in thermodynamic predictions. Here, we differentiate between the interfacial energy for the coherent fcc(1 1 1)/hcp(0 0 0 1) interface and the 'pseudo-interfacial energy' that enters the thermodynamic expression for the SFE.
View Article and Find Full Text PDFTo examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W Re Os (0 ⩽ x, y ⩽ 6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect.
View Article and Find Full Text PDFThe antiferromagnetic structures of a low Si-content FeMn(PSi) alloy were investigated by first principles calculations. One possible antiferromagnetic structure in supercell along the c-axis was revealed in FeMnP0.75Si0.
View Article and Find Full Text PDFWe demonstrate that the interface structure has a significant influence on the magnetic state of MnGa/Co films consisting of L1(0)-MnGa on face-centered-cubic Co(001) surface. We reveal an antiferromagnetic to ferromagnetic magnetization reversal as a function of the lateral lattice constant. The magnetization reversal mainly originates from localized states and weak hybridization at interface due to charge redistribution between muffin-tin spheres and interstitial region.
View Article and Find Full Text PDFIn weakly ferromagnetic materials, already small changes in the atomic configuration triggered by temperature or chemistry can alter the magnetic interactions responsible for the non-random atomic-spin orientation. Different magnetic states, in turn, can give rise to substantially different macroscopic properties. A classical example is iron, which exhibits a great variety of properties as one gradually removes the magnetic long-range order by raising the temperature towards its Curie point of TC°= 1043 K.
View Article and Find Full Text PDFAbsolute values of surface energy and surface stress of solids are hardly accessible by experiment. Here, we investigate the temperature dependence of both parameters for the (001) and (110) surface facets of body-centered cubic Fe from first-principles modeling taking into account vibrational, electronic, and magnetic degrees of freedom. The monotonic decrease of the surface energies of both facets with increasing temperature is mostly due to lattice vibrations and magnetic disorder.
View Article and Find Full Text PDF