Although the evaluation of the uncertainty of an analytical method is a mandatory step in the method's validation, its applicability to the monitoring of trace compounds in complex samples is not simple, nor is it part of the routine of most laboratories, namely those dedicated to research. This manuscript focuses on the full validation of an analytical procedure for determining trace concentrations of twenty-four pharmaceutical active compounds (PhACs) in wastewaters using solid-phase extraction (SPE) and ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). The method optimization was performed on different wastewater matrices, namely influents and final effluents from two distinct wastewater treatment plants (WWTPs).
View Article and Find Full Text PDFTwenty-four pharmaceutical active compounds (PhACs) were evaluated in the soft tissues of clams Ruditappes decussatus exposed along a 1.5-km dispersal gradient of the treated effluent from an urban wastewater treatment plant discharging in Ria Formosa, and compared with those in the marine waters and discharged effluents. The clams were exposed for 1 month, in June-July 2016, 2017 and 2018.
View Article and Find Full Text PDFPharmaceutical active compounds (PhACs) belonging to analgesics, antibiotics, and non-steroidal anti-inflammatory drugs (NSAIDs) therapeutic classes were monitored in wastewater influents and effluents from two Portuguese urban wastewater treatment plants (UWWTPs) for 24 months. Both facilities were chosen due to their effluents are discharged in highly touristic and sensitive areas, Tagus river and Ria Formosa coastal lagoon, respectively. Target PhACs, acetaminophen, diclofenac, ibuprofen, naproxen, sulfadiazine, and sulfamethoxazole were measured using solid-phase extraction (SPE) coupled to liquid chromatography tandem mass spectrometry (LC-MS/MS).
View Article and Find Full Text PDFPresently, water quantity and quality problems persist both in developed and developing countries, and concerns have been raised about the presence of emerging pollutants (EPs) in water. The circular economy provides ways of achieving sustainable resource management that can be implemented in the water sector, such as the reuse of drinking water treatment sludges (WTSs). This study evaluated the potential of WTS containing a high concentration of activated carbon for the removal of two EPs: the steroid hormones 17β-estradiol (E2) and 17α-ethinylestradiol (EE2).
View Article and Find Full Text PDFAchromobacter denitrificans strain PR1, previously found to harbour specific degradation pathways with high sulfamethoxazole (SMX) degradation rates, was bioaugmented into laboratory-scale membrane bioreactors (MBRs) operated under aerobic conditions to treat SMX-containing real domestic wastewater. Different hydraulic retention times (HRTs), which is related to reaction time and loading rates, were considered and found to affect the SMX removal efficiency. The availability of primary substrates was important in both bioaugmented and non-bioaugmented activated sludge (AS) for cometabolism of SMX.
View Article and Find Full Text PDFWastewater treatments can eliminate or remove a substantial amount of pharmaceutical active compounds (PhACs), but there may still be significant concentrations of them in effluents discharged into surface water bodies. Beirolas wastewater treatment plant (WWTP) is located in the Lisbon area and makes its effluent discharges into Tagus estuary (Portugal). The main objective of this study is to quantify a group of 32 PhACs in the different treatments used in this WWTP.
View Article and Find Full Text PDFThe water constituents that are currently subject to legal control are only a small fraction of the vast number of chemical substances and microorganisms that may occur in both the environment and water resources. The main objective of the present study was to study the health impact resulting from exposure to a mixture of pharmaceuticals that have been detected in tap water at low doses. Analyses of atenolol, caffeine, erythromycin, carbamazepine, and their metabolites in blood, urine, feces, fat tissue, liver, and kidney after exposure to a mixture of these pharmaceuticals in treated drinking water were performed.
View Article and Find Full Text PDFSulfonamides (SAs) are one class of the most widely used antibiotics around the world and have been frequently detected in municipal wastewater and surface water in recent years. Their transformation in waste water treatment plants (WWTP) and in water treatment plants (WTP), as well as, their fate and transport in the aquatic environment are of concern. The reaction of six sulfonamides (sulfamethoxazole, sulfapyridine, sulfamethazine, sulfamerazine, sulfathiazole and sulfadiazine) with free chlorine was investigated at a laboratory scale in order to identify the main chlorination by-products.
View Article and Find Full Text PDFA monitoring study of 31 pharmaceuticals along Lisbon's drinking water supply system was implemented, which comprised the analysis of 250 samples including raw water (surface water and groundwater), and drinking water. Of the 31 pharmaceutical compounds, only sixteen were quantified in the analyzed samples, with levels ranging from 0.005 to 46 ng/L in raw water samples and 0.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
August 2011
[S,S]-ethylenediamine-N,N'-diglutaric acid (EDDG) has been gaining interest in the industrial sector as a promising chelator. In this study, the effective metal complexing capacity of EDDG over a wide pH range was modelled and its biodegradability assessed. Results showed that EDDG could effectively bind to several metallic ions in a wide pH range and was completely biodegraded after approximately 15 days by un-acclimatized sludge.
View Article and Find Full Text PDFA procedure based on solid-phase microextraction (SPME) and gas chromatography coupled with mass spectrometry (GC-MS) was developed and validated in order to analyse 10 phenols in water samples. The optimised conditions were obtained using polyacrylate fibre (PA), 20ml of sample volume, 10% NaCl, pH 4.0 and direct extraction at 35 degrees C and 1000rpm, for 40min.
View Article and Find Full Text PDFThe analysis of pesticides in water samples is a problem of primary concern for quality control laboratories due to the toxicity level of these compounds and their public health risk. In order to evaluate the impact of pesticides in the Lisbon drinking water supply system, following the requirements of the European Union Directive 98/83/EC, we developed and validated an analytical method based on the combination of solid-phase extraction with liquid chromatography and tandem mass spectrometry. In this work, several pesticides were studied: imidacloprid, dimethoate, cymoxanil, carbendazime, phosmet, carbofuran, isoproturon, diuron, methidathion, linuron, pyrimethanil, methiocarbe, tebuconazole and chlorpyrifos.
View Article and Find Full Text PDF