Proc Int Conf Mach Learn Appl
December 2019
Several prominent public health hazards [29] that occurred at the beginning of this century due to adverse drug events (ADEs) have raised international awareness of governments and industries about pharmacovigilance (PhV) [6,7], the science and activities to monitor and prevent adverse events caused by pharmaceutical products after they are introduced to the market. A major data source for PhV is large-scale longitudinal observational databases (LODs) [6] such as electronic health records (EHRs) and medical insurance claim databases. Inspired by the Self-Controlled Case Series (SCCS) model [27], arguably the leading method for ADE discovery from LODs, we propose baseline regularization, a regularized generalized linear model that leverages the diverse health profiles available in LODs across different at different .
View Article and Find Full Text PDFAdverse drug events (ADEs) are a major concern and point of emphasis for the medical profession, government, and society. A diverse set of techniques from epidemiology, statistics, and computer science are being proposed and studied for ADE discovery from observational health data (e.g.
View Article and Find Full Text PDFHuman pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia.
View Article and Find Full Text PDFObjective: Electronic health records (EHR) offer medical and pharmacogenomics research unprecedented opportunities to identify and classify patients at risk. EHRs are collections of highly inter-dependent records that include biological, anatomical, physiological, and behavioral observations. They comprise a patient's clinical phenome, where each patient has thousands of date-stamped records distributed across many relational tables.
View Article and Find Full Text PDFMachine learning is continually being applied to a growing set of fields, including the social sciences, business, and medicine. Some fields present problems that are not easily addressed using standard machine learning approaches and, in particular, there is growing interest in . In this type of task we are interested in producing a classifier that specifically characterizes a subgroup of interest by maximizing the difference in predictive performance for some outcome between subgroups in a population.
View Article and Find Full Text PDFProc Int Conf Mach Learn
December 2012
Precision-recall (PR) curves and the areas under them are widely used to summarize machine learning results, especially for data sets exhibiting class skew. They are often used analogously to ROC curves and the area under ROC curves. It is known that PR curves vary as class skew changes.
View Article and Find Full Text PDFInt J Data Min Bioinform
April 2013
The functions of proteins in living organisms are related to their 3-D structure, which is known to be ultimately determined by their linear sequence of amino acids that together form these macromolecules. It is, therefore, of great importance to be able to understand and predict how the protein 3D-structure arises from a particular linear sequence of amino acids. In this paper we report the application of Machine Learning methods to predict, with high values of accuracy, the secondary structure of proteins, namely alpha-helices and beta-sheets, which are intermediate levels of the local structure.
View Article and Find Full Text PDFMach Learn Knowl Discov Databases
January 2013
We introduce Score As You Lift (SAYL), a novel Statistical Relational Learning (SRL) algorithm, and apply it to an important task in the diagnosis of breast cancer. SAYL combines SRL with the marketing concept of uplift modeling, uses the area under the uplift curve to direct clause construction and final theory evaluation, integrates rule learning and probability assignment, and conditions the addition of each new theory rule to existing ones. Breast cancer, the most common type of cancer among women, is categorized into two subtypes: an earlier in situ stage where cancer cells are still confined, and a subsequent invasive stage.
View Article and Find Full Text PDFThe pharmaceutical industry, consumer protection groups, users of medications and government oversight agencies are all strongly interested in identifying adverse reactions to drugs. While a clinical trial of a drug may use only a thousand patients, once a drug is released on the market it may be taken by millions of patients. As a result, in many cases adverse drug events (ADEs) are observed in the broader population that were not identified during clinical trials.
View Article and Find Full Text PDFProc Int Conf Mach Learn
January 2012
Learning from electronic medical records (EMR) is challenging due to their relational nature and the uncertain dependence between a patient's past and future health status. Statistical relational learning is a natural fit for analyzing EMRs but is less adept at handling their inherent latent structure, such as connections between related medications or diseases. One way to capture the latent structure is via a relational clustering of objects.
View Article and Find Full Text PDFIt has been recognized that the development of new therapeutic drugs is a complex and expensive process. A large number of factors affect the activity in vivo of putative candidate molecules and the propensity for causing adverse and toxic effects is recognized as one of the major hurdles behind the current "target-rich, lead-poor" scenario. Structure-Activity Relationship (SAR) studies, using relational Machine Learning (ML) algorithms, have already been shown to be very useful in the complex process of rational drug design.
View Article and Find Full Text PDF