Publications by authors named "Vitor Gaspar"

On-the-fly biofabrication of reproducible 3D tumor models at a pre-clinical level is highly desirable to level-up their applicability and predictive potential. Incorporating ECM biomolecular cues and its complex 3D bioarchitecture in the design stages of such in vitro platforms is essential to better recapitulate the native tumor microenvironment. To materialize these needs, herein we describe an innovative flow-on-repellent (FLORE) 3D extrusion bioprinting technique that leverages expedited and automatized bioink deposition onto a customized superhydrophobic printing bed.

View Article and Find Full Text PDF

The establishment of organotypic preclinical models that accurately resemble the native tumor microenvironment at an anatomic human scale is highly desirable to level up platforms potential for screening candidate therapies. The bioengineering of anatomic-scaled three-dimensional (3D) models that emulate native tumor scale while recapitulating their cellular and matrix components remains, however, to be fully realized. In this focus, herein, we leveraged embedded 3D bioprinting for biofabricating pancreatic ductal adenocarcinoma (PDAC) models combining gelatin-methacryloyl and hyaluronic acid methacrylate extracellular matrix (ECM)-mimetic biomaterials with human pancreatic cancer cells and cancer-associated fibroblasts to generate models capable of emulating native tumor size (∼6 mm) and stromal elements.

View Article and Find Full Text PDF

Leveraging human cells as materials precursors is a promising approach for fabricating living materials with tissue-like functionalities and cellular programmability. Here we describe a set of cellular units with metabolically engineered glycoproteins that allow cells to tether together to function as macrotissue building blocks and bioeffectors. The generated human living materials, termed as Cellgels, can be rapidly assembled in a wide variety of programmable three-dimensional configurations with physiologically relevant cell densities (up to 10 cells per cm), tunable mechanical properties and handleability.

View Article and Find Full Text PDF

In the intricate landscape of the tumor microenvironment, both cancer and stromal cells undergo rapid metabolic adaptations to support their growth. Given the relevant role of the metabolic secretome in fueling tumor progression, its unique metabolic characteristics have gained prominence as potential biomarkers and therapeutic targets. As a result, rapid and accurate tools have been developed to track metabolic changes in the tumor microenvironment with high sensitivity and resolution.

View Article and Find Full Text PDF

Canine mammary tumors (CMTs) represent a significant health concern in dogs, with a high incidence among intact female dogs. CMTs are a promising comparative model for human breast cancer, due to sharing several pathophysiological features. Additionally, CMTs have a strong genetic correlation with their human counterpart, including the expression of microRNAs (miRNAs).

View Article and Find Full Text PDF
Article Synopsis
  • Chronic inflammation is linked to cancer development, with high levels of prostaglandin E2 and COX-2 expression identified in several types of cancer, impacting tumor growth and immune response.
  • Non-steroidal anti-inflammatory drugs (NSAIDs) are used to lower pain and inflammation by blocking COX-2, which could have implications for cancer treatment.
  • This review discusses how NSAIDs and COX-2 inhibitors might be utilized for breast cancer therapy, based on various laboratory studies assessing their effectiveness and potential use alongside other cancer treatments.
View Article and Find Full Text PDF

The diverse biomolecular landscape of tissue-specific decellularized extracellular matrix (dECM) biomaterials provides a multiplicity of bioinstructive cues to target cells, rendering them highly valuable for various biomedical applications. However, the isolation of dECM biomaterials entails cumbersome xenogeneic enzymatic digestions and also additional inactivation procedures. Such, increases processing time, increments costs and introduces residues of non-naturally present proteins in dECM formulations that remain present even after inactivation.

View Article and Find Full Text PDF

Advancing biofabrication toward manufacturing living constructs with well-defined architectures and increasingly biologically relevant cell densities is highly desired to mimic the biofunctionality of native human tissues. The formulation of tissue-like, cell-dense inks for biofabrication remains, however, challenging at various levels of the bioprinting process. Promising advances have been made toward this goal, achieving relatively high cell densities that surpass those found in conventional platforms, pushing the current boundaries closer to achieving tissue-like cell densities.

View Article and Find Full Text PDF

Cryogels exhibit unique shape memory with full recovery and structural stability features after multiple injections. These constructs also possess enhanced cell permeability and nutrient diffusion when compared to typical bulk hydrogels. Volumetric processing of cryogels functionalized with nanosized units has potential to widen their biomedical applications, however this has remained challenging and relatively underexplored.

View Article and Find Full Text PDF

Embedded extrusion 3D bioprinting is a rapidly emerging additive manufacturing methodology that provides a precise spatial deposition of synthetic or natural-origin low-viscosity bioinks during the extrusion printing process. Such a strategy has to date unlocked the freeform extrusion biofabrication of complex micro-to-macro-scale living architectures for numerous applications, including tissue engineering and in vitro disease modeling. In this chapter, we describe a suspension bioprinting methodology leveraging a continuous viscoelastic biopolymer supporting bath functionalized with divalent calcium cations to enable a rapid processing of user-defined bioinks toward architecturally complex 3D in vitro tumor models.

View Article and Find Full Text PDF

Hyperthermic nanomedicines are particularly relevant for tackling human cancer, providing a valuable alternative to conventional therapeutics. The early-stage preclinical performance evaluation of such anti-cancer treatments is conventionally performed in flat 2D cell cultures that do not mimic the volumetric heat transfer occurring in human tumors. Recently, improvements in bioengineered 3D models have unlocked the opportunity to recapitulate major tumor microenvironment hallmarks and generate highly informative readouts that can contribute to accelerating the discovery and validation of efficient hyperthermic treatments.

View Article and Find Full Text PDF

The androgens/androgen receptor (AR) axis is the main therapeutic target in prostate cancer (PCa). However, while initially responsive, a subset of tumors loses AR expression through mechanisms putatively associated with epigenetic modifications. In this study, we assessed the link between the presence of CpG methylation in the 5'UTR and promoter regions of AR and loss of AR expression.

View Article and Find Full Text PDF

Breakthroughs in precision cell surface engineering tools are supporting the rapid development of programmable living assemblies with valuable features for tackling complex biological problems. Herein, the authors overview the most recent technological advances in chemically- and biologically-driven toolboxes for engineering mammalian cell surfaces and triggering their assembly into living architectures. A particular focus is given to surface engineering technologies for enabling biomimetic cell-cell social interactions and multicellular cell-sorting events.

View Article and Find Full Text PDF

Breast cancer is one of the most common and well-known types of cancer among women worldwide and is the most frequent neoplasm in intact female dogs. Female dogs are considered attractive models or studying spontaneous breast cancer, whereas female rats are currently the most widely used animal models for breast cancer research in the laboratory context. Both female dogs and female rats have contributed to the advancement of scientific knowledge in this field, and, in a "One Health" approach, they have allowed broad understanding of specific biopathological pathways, influence of environmental factors and screening/discovery of candidate therapies.

View Article and Find Full Text PDF

Brewer's spent yeast (BSY) mannoproteins have been reported to possess thickening and emulsifying properties. The commercial interest in yeast mannoproteins might be boosted considering the consolidation of their properties supported by structure/function relationships. This work aimed to attest the use of extracted BSY mannoproteins as a clean label and vegan source of ingredients for the replacement of food additives and protein from animal sources.

View Article and Find Full Text PDF

This study tested hyperbaric storage (25-150 MPa, for 30 days) at room-temperature (HS/RT, 18-23 °C) in order to control the development of ascospores in apple juice. In order to mimic commercially pasteurized juice contaminated with ascospores, thermal pasteurization (70 and 80 °C for 30 s) and nonthermal high pressure pasteurization (600 MPa for 3 min at 17 °C, HPP) took place, and the juice was afterwards placed under HS/RT conditions. Control samples were also placed in atmospheric pressure (AP) conditions at RT and were refrigerated (4 °C).

View Article and Find Full Text PDF

Pancreatic cancer exhibits a unique bioarchitecture and desmoplastic cancer-stoma interplay that governs disease progression, multi-resistance, and metastasis. Emulating the biological features and microenvironment heterogeneity of pancreatic cancer stroma in vitro is remarkably complex, yet highly desirable for advancing the discovery of innovative therapeutics. Diverse bioengineering approaches exploiting patient-derived organoids, cancer-on-a-chip platforms, and 3D bioprinted living constructs have been rapidly emerging in an endeavor to seamlessly recapitulate major tumor-stroma biodynamic interactions in a preclinical setting.

View Article and Find Full Text PDF

Castration-resistant prostate cancer (CRPC) is an incurable form of prostate cancer (PCa), with DNMT1 and G9a being reported as overexpressed, rendering them highly attractive targets for precision medicine. CM-272 is a dual inhibitor of both methyltransferases' activity. Herein, we assessed the response of different PCa cell lines to CM-272, in both 2D and 3D models, and explored the molecular mechanisms underlying CM-272 inhibitory effects.

View Article and Find Full Text PDF

Bioengineering close-to-native in vitro models that emulate tumors bioarchitecture and microenvironment is highly appreciable for improving disease modeling toolboxes. Herein, pancreatic cancer living units-so termed cancer-on-a-bead models-are generated. Such user-programmable in vitro platforms exhibit biomimetic multicompartmentalization and tunable integration of cancer associated stromal elements.

View Article and Find Full Text PDF

This study reports the formulation and delivery of hyaluronic acid-Zein (HA-Zein) nanogels loaded with Shikonin (SK) to selectively attenuate macrophage inflammasome. The self-assembled nanogels, produced by nanoprecipitation, exhibited high encapsulation efficiency, and were selectively internalized by human THP-1-derived macrophages without eliciting cytotoxic responses. Cell treatment with HA-Zein-SK nanogels before stimulation with LPS and Nigericin significantly suppressed caspase-1 activation and IL-1β production, indicating inflammasome inhibition.

View Article and Find Full Text PDF

Cancer-associated pancreatic stellate cells installed in periacinar/periductal regions are master players in generating the characteristic biophysical shield found in pancreatic ductal adenocarcinoma (PDAC). Recreating this unique PDAC stromal architecture and its desmoplastic microenvironment in vitro is key to discover innovative treatments. However, this still remains highly challenging to realize.

View Article and Find Full Text PDF

Recent advances on brewer's yeast cell wall polysaccharides have unraveled exquisite structural features and diverse composition with (β1→3), (β1→6), (α1→4), (β1→4)-mix-linked glucans that are recognized to interact with different cell receptors and trigger specific biological responses. Herein, a comprehensive showcase of structure-biofunctional relationships between yeast polysaccharides and their biological targets is highlighted, with a focus on polysaccharide features that govern the biomedical activity. The insolubility of β-glucans is a crucial factor for binding and activation of Dectin-1 receptor, operating as adjuvants of immune responses.

View Article and Find Full Text PDF

Engineered living materials represent a new generation of human-made biotherapeutics that are highly attractive for a myriad of medical applications. In essence, such cell-rich platforms provide encodable bioactivities with extended lifetimes and environmental multi-adaptability currently unattainable in conventional biomaterial platforms. Emerging cell bioengineering tools are herein discussed from the perspective of materializing living cells as cooperative building blocks that drive the assembly of multiscale living materials.

View Article and Find Full Text PDF

Combinatorial conjugation of organ-on-a-chip platforms with additive manufacturing technologies is rapidly emerging as a disruptive approach for upgrading cancer-on-a-chip systems towards anatomic-sized dynamic in vitro models. This valuable technological synergy has potential for giving rise to truly physiomimetic 3D models that better emulate tumor microenvironment elements, bioarchitecture, and response to multidimensional flow dynamics. Herein, we showcase the most recent advances in bioengineering 3D-bioprinted cancer-on-a-chip platforms and provide a comprehensive discussion on design guidelines and possibilities for high-throughput analysis.

View Article and Find Full Text PDF