Biomanufacturing is crucial for the bioeconomy, with growing investment and attention from industries and governments. Over recent decades numerous biotech companies have been founded, and policies have increasingly prioritised sustainable production methods. However, translation of biotechnological innovations into industrial applications remains challenging, requiring interdisciplinary research infrastructures (RIs) to address gaps in bioprocess development, scalability, and competitiveness.
View Article and Find Full Text PDFSystems biology aims to understand living organisms through mathematically modeling their behaviors at different organizational levels, ranging from molecules to populations. Modeling involves several steps, from determining the model purpose to developing the mathematical model, implementing it computationally, simulating the model's behavior, evaluating, and refining the model. Importantly, model simulation results must be reproducible, ensuring that other researchers can obtain the same results after writing the code de novo and/or using different software tools.
View Article and Find Full Text PDFUnsupervised learning, particularly clustering, plays a pivotal role in disease subtyping and patient stratification, especially with the abundance of large-scale multi-omics data. Deep learning models, such as variational autoencoders (VAEs), can enhance clustering algorithms by leveraging inter-individual heterogeneity. However, the impact of confounders-external factors unrelated to the condition, e.
View Article and Find Full Text PDFFront Bioeng Biotechnol
September 2024
Synthetic genetic circuits have revolutionised our capacity to control cell viability by conferring microorganisms with programmable functionalities to limit survival to specific environmental conditions. Here, we present the GenoMine safeguard, a CRISPR-Cas9-based kill switch for the biotechnological workhorse that employs repetitive genomic elements as cleavage targets to unleash a highly genotoxic response. To regulate the system's activation, we tested various circuit-based mechanisms including the digitalised version of an inducible expression system that operates at the transcriptional level and different options of post-transcriptional riboregulators.
View Article and Find Full Text PDFArch Microbiol
September 2024
The fermentative model yeast Saccharomyces cerevisiae has been extensively used to study the genetic basis of stress response and homeostasis. In this study, we performed quantitative trait loci (QTL) analysis of the high-temperature fermentation trait of the progeny from the mating of the S. cerevisiae natural isolate BCC39850 (haploid#17) and the laboratory strain CEN.
View Article and Find Full Text PDFThe growing interest in clinical diagnostics has recently focused on metabolic biomarkers. Here, we present a protocol for sample preparation, extraction of cholesterol-related sterols, and quantification of 10 sterols in human blood serum samples using targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS). We also describe steps of machine learning techniques to develop novel decision-making systems that offer potential benefits in disease monitoring and surveillance by measuring metabolic pathways.
View Article and Find Full Text PDFIndustrial biotechnology uses Design-Build-Test-Learn (DBTL) cycles to accelerate the development of microbial cell factories, required for the transition to a biobased economy. To use them effectively, appropriate connections between the phases of the cycle are crucial. Using -coumaric acid (pCA) production in as a case study, we propose the use of one-pot library generation, random screening, targeted sequencing, and machine learning (ML) as links during DBTL cycles.
View Article and Find Full Text PDFMedium-chain-length α,ω-diols (mcl-diols) play an important role in polymer production, traditionally depending on energy-intensive chemical processes. Microbial cell factories offer an alternative, but conventional strains like Escherichia coli and Saccharomyces cerevisiae face challenges in mcl-diol production due to the toxicity of intermediates such as alcohols and acids. Metabolic engineering and synthetic biology enable the engineering of non-model strains for such purposes with P.
View Article and Find Full Text PDFMicrobial cell factories are instrumental in transitioning towards a sustainable bio-based economy, offering alternatives to conventional chemical processes. However, fulfilling their potential requires simultaneous screening for optimal media composition, process and genetic factors, acknowledging the complex interplay between the organism's genotype and its environment. This study employs statistical design of experiments to systematically explore these relationships and optimize the production of p-coumaric acid (pCA) in Saccharomyces cerevisiae.
View Article and Find Full Text PDFLignocellulosic material can be converted to valorized products such as fuels. Pretreatment is an essential step in conversion, which is needed to increase the digestibility of the raw material for microbial fermentation. However, pretreatment generates by-products (hydrolysate toxins) that are detrimental to microbial growth.
View Article and Find Full Text PDFThe widespread Pseudomonas genus comprises a collection of related species with remarkable abilities to degrade plastics and polluted wastes and to produce a broad set of valuable compounds, ranging from bulk chemicals to pharmaceuticals. Pseudomonas possess characteristics of tolerance and stress resistance making them valuable hosts for industrial and environmental biotechnology. However, efficient and high-throughput genetic engineering tools have limited metabolic engineering efforts and applications.
View Article and Find Full Text PDFWith COVID-19 becoming endemic, there is a continuing need to find biomarkers characterizing the disease and aiding in patient stratification. We studied the relation between COVID-19 and cholesterol biosynthesis by comparing 10 intermediates of cholesterol biosynthesis during the hospitalization of 164 patients (admission, disease deterioration, discharge) admitted to the University Medical Center of Ljubljana. The concentrations of zymosterol, 24-dehydrolathosterol, desmosterol, and zymostenol were significantly altered in COVID-19 patients.
View Article and Find Full Text PDFAs a global regulatory mechanism, carbon catabolite repression allows bacteria and eukaryal microbes to preferentially utilize certain substrates from a mixture of carbon sources. The mechanism varies among different species. In Pseudomonas spp.
View Article and Find Full Text PDFis a robust microbial cell factory for organic acid production. However, the regulation of many industrially important pathways is still poorly understood. The regulation of the glucose oxidase (Gox) expression system, involved in the biosynthesis of gluconic acid, has recently been uncovered.
View Article and Find Full Text PDFComputational approaches are practical when investigating putative peroxisomal proteins and for sub-peroxisomal protein localization in unknown protein sequences. Nowadays, advancements in computational methods and Machine Learning (ML) can be used to hasten the discovery of novel peroxisomal proteins and can be combined with more established computational methodologies. Here, we explain and list some of the most used tools and methodologies for novel peroxisomal protein detection and localization.
View Article and Find Full Text PDFSynthetic biologists design and engineer organisms for a better and more sustainable future. While the manifold prospects are encouraging, concerns about the uncertain risks of genome editing affect public opinion as well as local regulations. As a consequence, biosafety and associated concepts, such as the Safe-by-design framework and genetic safeguard technologies, have gained notoriety and occupy a central position in the conversation about genetically modified organisms.
View Article and Find Full Text PDFObjective: Early stages with streptococcal necrotizing soft tissue infections (NSTIs) are often difficult to discern from cellulitis. Increased insight into inflammatory responses in streptococcal disease may guide correct interventions and discovery of novel diagnostic targets.
Methods: Plasma levels of 37 mediators, leucocytes and CRP from 102 patients with β-hemolytic streptococcal NSTI derived from a prospective Scandinavian multicentre study were compared to those of 23 cases of streptococcal cellulitis.
One-carbon (C1) compounds such as methanol, formate, and CO are alternative, sustainable microbial feedstocks for the biobased production of chemicals and fuels. In this study, we engineered the carbon metabolism of the industrially important bacterium Pseudomonas putida to modularly assimilate these three substrates through the reductive glycine pathway. First, we demonstrated the functionality of the C1-assimilation module by coupling the growth of auxotrophic strains to formate assimilation.
View Article and Find Full Text PDFBackground: Pseudomonas putida has received increasing interest as a cell factory due to its remarkable features such as fast growth, a versatile and robust metabolism, an extensive genetic toolbox and its high tolerance to oxidative stress and toxic compounds. This interest is driven by the need to improve microbial performance to a level that enables biologically possible processes to become economically feasible, thereby fostering the transition from an oil-based economy to a more sustainable bio-based one. To this end, one of the current strategies is to maximize the product-substrate yield of an aerobic biocatalyst such as P.
View Article and Find Full Text PDFOne-carbon (C1) compounds are promising feedstocks for the sustainable production of commodity chemicals. CO is a particularly advantageous C1-feedstock since it is an unwanted industrial off-gas that can be converted into valuable products while reducing its atmospheric levels. Acetogens are microorganisms that can grow on CO/H gas mixtures and syngas converting these substrates into ethanol and acetate.
View Article and Find Full Text PDFWe present the OrganelX e-Science Web Server that provides a user-friendly implementation of the In-Pero and In-Mito classifiers for sub-peroxisomal and sub-mitochondrial localization of peroxisomal and mitochondrial proteins and the Is-PTS1 algorithm for detecting and validating potential peroxisomal proteins carrying a PTS1 signal sequence. The OrganelX e-Science Web Server is available at https://organelx.hpc.
View Article and Find Full Text PDFBackground: The use of palm oil for our current needs is unsustainable. Replacing palm oil with oils produced by microbes through the conversion of sustainable feedstocks is a promising alternative. However, there are major technical challenges that must be overcome to enable this transition.
View Article and Find Full Text PDFMetabolic engineering of microorganisms aims to design strains capable of producing valuable compounds under relevant industrial conditions and in an economically competitive manner. From this perspective, and beyond the need for a catalyst, biomass is essentially a cost-intensive, abundant by-product of a microbial conversion. Yet, few broadly applicable strategies focus on the optimal balance between product and biomass formation.
View Article and Find Full Text PDFIntroduction: Necrotizing Soft Tissue Infections (NSTI) are severe infections with high mortality affecting a heterogeneous patient population. There is a need for a clinical decision support system which predicts outcomes and provides treatment recommendations early in the disease course.
Methods: To identify relevant clinical needs, interviews with eight medical professionals (surgeons, intensivists, general practitioner, emergency department physician) were conducted.