In this paper, we discuss the interplay between beta-amyloid (Aβ) peptide, Tau fragments, oxidative stress, and mitochondria in the neuronal model of cerebellar granule neurons (CGNs) in which the molecular events reminiscent of AD are activated. The identification of the death route and the cause/effect relationships between the events leading to death could be helpful to manage the progression of apoptosis in neurodegeneration and to define antiapoptotic treatments acting on precocious steps of the death process. Mitochondrial dysfunction is among the earliest events linked to AD and might play a causative role in disease onset and progression.
View Article and Find Full Text PDFAn early increase in ROS production is characteristic of cerebellar granule cells undergoing apoptosis in the presence of 5 mM KCl. However, the sources of this increase have not been investigated in detail. In particular whether there is a single enzymatic source or the increase in ROS production is the consequence of the involvement of different enzymes has not been studied in depth.
View Article and Find Full Text PDFAlthough it is recognized that ATP plays a part in apoptosis, whether and how its level changes en route to apoptosis as well as how ATP is synthesized has not been fully investigated. We have addressed these questions using cultured cerebellar granule cells. In particular, we measured the content of ATP, ADP, AMP, IMP, inosine, adenosine and L-lactate in cells undergoing apoptosis during the commitment phase (0-8 h) in the absence or presence of oligomycin or/and of citrate, which can inhibit totally the mitochondrial oxidative phosphorylation and largely the substrate-level phosphorylation in glycolysis, respectively.
View Article and Find Full Text PDFIn order to find out whether and how proteasomes participate in the processes leading cerebellar granule cells to death either in necrosis, due to glutamate neurotoxicity, or in apoptosis, due to K(+) shift, we measured the three proteasome activities by using specific fluorescent probes and investigated the effect of several proteasome inhibitors, including MG132, on the cytochrome c release taking place in the early phase of both apoptosis and necrosis. We show that differently from apoptosis, the early phase of necrosis does not require proteasome activation. Inhibition of proteasome activity can prevent cytochrome c release in cerebellar granule cells undergoing apoptosis, thus improving cell survival, but not necrosis.
View Article and Find Full Text PDF