One key task in the early fight against the COVID-19 pandemic was to plan non-pharmaceutical interventions to reduce the spread of the infection while limiting the burden on the society and economy. With more data on the pandemic being generated, it became possible to model both the infection trends and intervention costs, transforming the creation of an intervention plan into a computational optimization problem. This paper proposes a framework developed to help policy-makers plan the best combination of non-pharmaceutical interventions and to change them over time.
View Article and Find Full Text PDFFrom 2018 to 2021, the Sussex-Huawei Locomotion-Transportation Recognition Challenge presented different scenarios in which participants were tasked with recognizing eight different modes of locomotion and transportation using sensor data from smartphones. In 2019, the main challenge was using sensor data from one location to recognize activities with sensors in another location, while in the following year, the main challenge was using the sensor data of one person to recognize the activities of other persons. We use these two challenge scenarios as a framework in which to analyze the effectiveness of different components of a machine-learning pipeline for activity recognition.
View Article and Find Full Text PDFInt J Environ Res Public Health
June 2021
The COVID-19 pandemic affected the whole world, but not all countries were impacted equally. This opens the question of what factors can explain the initial faster spread in some countries compared to others. Many such factors are overshadowed by the effect of the countermeasures, so we studied the early phases of the infection when countermeasures had not yet taken place.
View Article and Find Full Text PDFSensors (Basel)
January 2021
Context recognition using wearable devices is a mature research area, but one of the biggest issues it faces is the high energy consumption of the device that is sensing and processing the data. In this work we propose three different methods for optimizing its energy use. We also show how to combine all three methods to further increase the energy savings.
View Article and Find Full Text PDFSensors (Basel)
December 2017
The recognition of the user's context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context.
View Article and Find Full Text PDFDiabetes is a disease that has to be managed through appropriate lifestyle. Technology can help with this, particularly when it is designed so that it does not impose an additional burden on the patient. This paper presents an approach that combines machine-learning and symbolic reasoning to recognise high-level lifestyle activities using sensor data obtained primarily from the patient's smartphone.
View Article and Find Full Text PDF