The cure kinetics of various epoxy resin mixtures, comprising a bisphenol epoxy, two epoxy modifiers, and two hardening agents derived from cardanol technology, were investigated through differential scanning calorimetry (DSC). The development of these mixtures aimed to achieve epoxy materials with a substantial bio-content up to 50% for potential automotive applications, aligning with the 2019 European Regulation on climate neutrality and CO emission. The Friedman isoconversional method was employed to determine key kinetic parameters, such as activation energy and pre-exponential factor, providing insights into the cross-linking process and the Kamal-Sourour model was used to describe and predict the kinetics of the chemical reactions.
View Article and Find Full Text PDFThe automotive industry is always seeking novel solutions to improve the durability and the performance of textile materials used in vehicles. Indeed, especially after the coronavirus pandemic, antibacterial treatments have gained interest for their potential of ensuring cleanliness and safety toward microbial contamination within vehicles. This study gives a panoramic view of the durability of antibacterial treatments applied on textile materials in the automotive industry, focusing on their performance after experiencing accelerated aging processes.
View Article and Find Full Text PDFPolymer light-emitting diodes (PLEDs) have attracted growing interest in recent years for their potential use in displays and lighting fields. Nevertheless, PLED devices have some disadvantages in terms of low optoelectronic efficiency, high cost, short lifetimes and low thermal stability, which limit their final applications. Huge efforts have been made recently to improve the performances of these devices.
View Article and Find Full Text PDF