Publications by authors named "Vitkov L"

Aim: This prospective cohort study was undertaken to evaluate the success rate of root canal treatment (RCT) in type 2 diabetes mellitus (T2DM) patients with targeted level and unachieved targeted level of glycaemic control as well as the impact of RCT on the glucose blood level in T2DM patients.

Methodology: Patients needing RCT were divided into three groups: these without T2DM, that is, the control group (CG), those with targeted level of glycated haemoglobin HbA1c < 7% (TL A1c) and the third ones with unachieved targeted level (UTL A1c), that is, with HbA1c ≥ 7%. Before RCT, HbA1c and the periapical index (PAI) score were assessed, as well as 1 year later.

View Article and Find Full Text PDF

The encounter between dental biofilm and neutrophils in periodontitis remains elusive, although it apparently plays a crucial role in the periodontal pathology and constitutes a key topic of periodontology. Dental biofilm and neutrophils were isolated from orally healthy persons and patients with periodontitis. We investigated biofilm and its particle-shedding phenomenon with electron microscopy and nanoparticle tracking analysis (NTA); biofilm shedding-neutrophil interactions were examined ex vivo with epi-fluorescence microscopy.

View Article and Find Full Text PDF

The break of the epithelial barrier of gingiva has been a subject of minor interest, albeit playing a key role in periodontal pathology, transitory bacteraemia, and subsequent systemic low-grade inflammation (LGI). The significance of mechanically induced bacterial translocation in gingiva (e.g.

View Article and Find Full Text PDF

Extracellular chromatin, for example in the form of neutrophil extracellular traps (NETs), is an important element that propels the pathological progression of a plethora of diseases. DNA drives the interferon system, serves as autoantigen, and forms the extracellular scaffold for proteins of the innate immune system. An insufficient clearance of extruded chromatin after the release of DNA from the nucleus into the extracellular milieu can perform a secret task of moonlighting in immune-inflammatory and occlusive disorders.

View Article and Find Full Text PDF

The frequent severe COVID-19 course in patients with periodontitis suggests a link of the aetiopathogenesis of both diseases. The formation of intravascular neutrophil extracellular traps (NETs) is crucial to the pathogenesis of severe COVID-19. Periodontitis is characterised by an increased level of circulating NETs, a propensity for increased NET formation, delayed NET clearance and low-grade endotoxemia (LGE).

View Article and Find Full Text PDF

The subgingival biofilm attached to tooth surfaces triggers and maintains periodontitis. Previously, late-onset periodontitis has been considered a consequence of dysbiosis and a resultant polymicrobial disruption of host homeostasis. However, a multitude of studies did not show "healthy" oral microbiota pattern, but a high diversity depending on culture, diets, regional differences, age, social state etc.

View Article and Find Full Text PDF

SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses.

View Article and Find Full Text PDF

Periodontitis is considered a promoter of many systemic diseases, but the signaling pathways of this interconnection remain elusive. Recently, it became evident that certain microbial challenges promote a heightened response of myeloid cell populations to subsequent infections either with the same or other pathogens. This phenomenon involves changes in the cell epigenetic and transcription, and is referred to as ''trained immunity''.

View Article and Find Full Text PDF

Periodontitis is a general term for diseases characterised by inflammatory destruction of tooth-supporting tissues, gradual destruction of the marginal periodontal ligament and resorption of alveolar bone. Early-onset periodontitis is due to disturbed neutrophil extracellular trap (NET) formation and clearance. Indeed, mutations that inactivate the cysteine proteases cathepsin C result in the massive periodontal damage seen in patients with deficient NET formation.

View Article and Find Full Text PDF

Since the discovery and definition of neutrophil extracellular traps (NETs) 14 years ago, numerous characteristics and physiological functions of NETs have been uncovered. Nowadays, the field continues to expand and novel mechanisms that orchestrate formation of NETs, their previously unknown properties, and novel implications in disease continue to emerge. The abundance of available data has also led to some confusion in the NET research community due to contradictory results and divergent scientific concepts, such as pro- and anti-inflammatory roles in pathologic conditions, demarcation from other forms of cell death, or the origin of the DNA that forms the NET scaffold.

View Article and Find Full Text PDF

Anti-citrullinated protein autoantibodies (ACPA) precede the onset of clinical and subclinical rheumatoid arthritis (RA). ACPA are frequently generated in further chronic inflammatory diseases, e.g.

View Article and Find Full Text PDF

Periodontitis is characterized by PMN infiltration and formation of neutrophil extracellular traps (NETs). However, their functional role for periodontal health remains complex and partially understood. The main function of NETs appears to be evacuation of dental plaque pathogen-associated molecular patterns.

View Article and Find Full Text PDF

Bioinert endosteal implants cause a foreign body reaction, whereas bioactive ones cause osseointegration. However, the mechanisms responsible for the two modi of host response remain unclear. COX-2(-/-) animal models showed the dependence of osseointegration on prostaglandins.

View Article and Find Full Text PDF

Neutrophils are known to play a pivotal role in the host defense against Aspergillus infections. This is illustrated by the prevalence of Aspergillus infections in patients with neutropenia or phagocyte functional defects, such as chronic granulomatous disease. However, the mechanisms by which human neutrophils recognize and kill Aspergillus are poorly understood.

View Article and Find Full Text PDF

Chronic obstructive lung disease determines morbidity and mortality of patients with cystic fibrosis (CF). CF airways are characterized by a nonresolving neutrophilic inflammation. After pathogen contact or prolonged activation, neutrophils release DNA fibres decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs).

View Article and Find Full Text PDF

Implants trigger an inflammatory response, which is important for osseointegration. Here we studied neutrophil extracellular trap (NET) release of human neutrophils in response to sandblasted large-grit acid etched (SLA) implants using fluorescent, confocal laser scanning and scanning electron microscopy. Our studies demonstrate that human neutrophils rapidly adhered to SLA surfaces, which triggered histone citrullination and NET release.

View Article and Find Full Text PDF

Polymorphonuclear neutrophils have in recent years attracted new attention due to their ability to release neutrophil extracellular traps (NETs). These web-like extracellular structures deriving from nuclear chromatin have been depicted in ambiguous roles between antimicrobial defence and host tissue damage. NETs consist of DNA strands of varying thickness and are decorated with microbicidal and cytotoxic proteins.

View Article and Find Full Text PDF

RNAs are capable of modulating immune responses by binding to specific receptors. Neutrophils represent the major fraction of circulating immune cells, but receptors and mechanisms by which neutrophils sense RNA are poorly defined. Here, we analyzed the mRNA and protein expression patterns and the subcellular localization of the RNA receptors RIG-I, MDA-5, TLR3, TLR7, and TLR8 in primary neutrophils and immortalized neutrophil-like differentiated HL-60 cells.

View Article and Find Full Text PDF

Background: Cystic fibrosis (CF) lung disease is characterized by perpetuated neutrophilic inflammation with progressive tissue destruction. Neutrophils represent the major cellular fraction in CF airway fluids and are known to form neutrophil extracellular traps (NETs) upon stimulation. Large amounts of extracellular DNA-NETs are present in CF airway fluids.

View Article and Find Full Text PDF

Upon activation, neutrophils release DNA fibers decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs). Although NETs are bactericidal and contribute to innate host defense, excessive NET formation has been linked to the pathogenesis of autoinflammatory diseases. However, the mechanisms regulating NET formation, particularly during chronic inflammation, are poorly understood.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) are extracellular web-like structures produced by activated polymorphonuclear neutrophils. NETs kill bacteria extracellularly, but their role in human pathology remains largely unclear. One possible way of studying NETs is through the SEM approach.

View Article and Find Full Text PDF

The fate of the neutrophils within the inflammatory exudate in the periodontal crevice and their possible participation in the formation of neutrophil extracellular traps (NETs) are of clinical interest. However, the cytological analysis of clinical samples of inflammatory exudate is restricted by the obtainable quantities, which do not enable employing the routine approaches. Clinical examinations, ACLAR strip sampling, scanning electron microscopy, and confocal laser scanning microscopy were employed to analyze purulent crevicular exudate and gingival crevicular fluid in periodontitis.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) was used to study the effects of bleaching on the morphology of the enamel surface with nanoscale resolution. Samples of human tooth enamel with native (pumiced) or fine-polished surfaces were examined before and after bleaching with 30% carbamide peroxide. The obtained profilometric AFM data revealed significant morphological surface alterations.

View Article and Find Full Text PDF