Publications by authors named "Vitalyi E Gusev"

Surface acoustic waves (SAWs) convey energy at subwavelength depths along surfaces. Using interdigital transducers (IDTs) and opto-acousto-optic transducers (OAOTs), researchers have harnessed coherent SAWs with nanosecond periods and micrometer localization depth for various applications. These applications include the sensing of small amount of materials deposited on surfaces, assessing surface roughness and defects, signal processing, light manipulation, charge carrier and exciton transportation, and the study of fundamental interactions with thermal phonons, photons, magnons, and more.

View Article and Find Full Text PDF

Time-domain Brillouin scattering (TDBS) is a developing technique for imaging/evaluation of materials, currently used in material science and biology. Three-dimensional imaging and characterization of polycrystalline materials has been recently reported, demonstrating evaluation of inclined material boundaries. Here, the TDBS technique is applied to monitor the destruction of a lithium niobate single crystal upon non-hydrostatic compression in a diamond anvil cell.

View Article and Find Full Text PDF

A theory has been developed to interpret time-domain Brillouin scattering (TDBS) experiments involving coherent acoustic pulse (CAP) and light pulse beams propagating at an angle to each other. It predicts the influence of the directivity pattern of their acousto-optic interaction on TDBS signals when heterodyne detection of acoustically scattered light is in backward direction to incident light. The theory reveals relationships between the carrier frequency, amplitude and duration of acoustically induced "wave packets" in light transient reflectivity signals, and factors such as CAP duration, widths of light and sound beams, and their interaction angle.

View Article and Find Full Text PDF

Germanium nitride, having cubic spinel structure, γ-GeN, is a wide band-gap semiconductor with a large exciton binding energy that exhibits high hardness, elastic moduli and elevated thermal stability up to approximately 700°C. Experimental data on its bulk and shear moduli ( and , respectively) are strongly limited, inconsistent and, thus, require verification. Moreover, earlier first-principles density functional calculations provided significantly scattering values but consistently predicted much higher than the so far available experimental value.

View Article and Find Full Text PDF

The increasing role of two-dimensional (2D) devices requires the development of new techniques for ultrafast control of physical properties in 2D van der Waals (vdW) nanolayers. A special feature of heterobilayers assembled from vdW monolayers is femtosecond separation of photoexcited electrons and holes between the neighboring layers, resulting in the formation of Coulomb force. Using laser pulses, we generate a 0.

View Article and Find Full Text PDF

Time-domain Brillouin scattering (TDBS) is an all-optical experimental technique for investigating transparent materials based on laser picosecond ultrasonics. Its application ranges from imaging thin-films, polycrystalline materials and biological cells to physical properties such as residual stress, temperature gradients and nonlinear coherent nano-acoustic pulses. When the sample refractive index is spatially uniform and known in TDBS, analysis by windowed Fourier transforms allows one to depth-profile the sound velocity.

View Article and Find Full Text PDF

Flexural oscillations of freestanding films, nanomembranes, and nanowires are attracting growing attention for their importance to the fundamental physical and optical properties and device applications of two-dimensional and nanostructured (meta)materials. Here, we report on the observation of short-time scale ballistic motion in the flexural mode of a nanomembrane cantilever, driven by thermal fluctuation of flexural phonons, including measurements of ballistic velocities and displacements performed with subatomic resolution, using a free electron edge-scattering technique. Within intervals <10 μs, the membrane moves ballistically at a constant velocity, typically ~300 μm/s, while Brownian-like dynamics emerge for longer observation periods.

View Article and Find Full Text PDF

Strain engineering can be used to control the physical properties of two-dimensional van der Waals (2D-vdW) crystals. Coherent phonons, which carry dynamical strain, could push strain engineering to control classical and quantum phenomena in the unexplored picosecond temporal and nanometer spatial regimes. This intriguing approach requires the use of coherent GHz and sub-THz 2D phonons.

View Article and Find Full Text PDF

We applied time-domain Brillouin scattering (TDBS) for the characterization of porogen-based organosilicate glass (OGS) films deposited by spin-on-glass technology and cured under different conditions. Although the chemical composition and porosity measured by Fourier-transform infrared (FTIR) spectroscopy and ellipsometric porosimetry (EP) did not show significant differences between the films, remarkable differences between them were revealed by the temporal evolution of the Brillouin frequency (BF) shift of the probe light in the TDBS. The observed modification of the BF was a signature of the light-induced modification of the films in the process of the TDBS experiments.

View Article and Find Full Text PDF

The functionality of phonon-based quantum devices largely depends on the efficiency of the interaction of phonons with other excitations. For phonon frequencies above 20 GHz, generation and detection of the phonon quanta can be monitored through photons. The photon-phonon interaction can be enormously strengthened by involving an intermediate resonant quasiparticle, e.

View Article and Find Full Text PDF

Wide-range continuous spatial variation of the film composition in lateral compositionally graded epitaxial films requires the development of high throughput measurement techniques for their local and non-destructive characterization with the highest possible spatial resolution. Here we report on the first application of the picosecond laser ultrasonics (PLU) technique for the evaluation of acoustical and optical parameters of lateral compositionally graded film, the BaSrTiO (0 ≤ x ≤ 1) material library. The film was not dedicatedly prepared for its opto-acousto-optic evaluation by PLU, exhibiting significant lateral variations in thickness and surface roughness.

View Article and Find Full Text PDF

Non-invasive fast imaging of grain microstructure of polycrystalline ceria with sub-micrometric spatial resolution is performed via time-domain Brillouin scattering. The propagation of a nanoacoustic pulse is monitored down to 8 μm deep in a 30 × 30 μm area. Grains boundaries are reconstructed in three-dimensions via a two-step processing method, relying on the wavelet synchro-squeezed transform and the alphashape algorithm.

View Article and Find Full Text PDF

High-frequency surface phonons have a myriad of applications in telecommunications and sensing, but their generation and detection have often been limited to transducers occupying micron-scale regions because of the use of two-dimensional transducer arrays. Here, by means of transient reflection spectroscopy we experimentally demonstrate optically coupled nanolocalized gigahertz surface phonon transduction based on a gold nanowire emitter arranged parallel to linear gold nanorod receiver arrays, that is, quasi-one-dimensional emitter-receivers. We investigate the response up to 10 GHz of these individual optoacoustic and acousto-optic transducers, respectively, by exploiting plasmon-polariton longitudinal resonances of the nanorods.

View Article and Find Full Text PDF

In nanoscale communications, high-frequency surface acoustic waves are becoming effective data carriers and encoders. On-chip communications require acoustic wave propagation along nanocorrugated surfaces which strongly scatter traditional Rayleigh waves. Here, we propose the delivery of information using subsurface acoustic waves with hypersound frequencies of ∼20 GHz, which is a nanoscale analogue of subsurface sound waves in the ocean.

View Article and Find Full Text PDF

Time-domain Brillouin scattering is an opto-acousto-optical probe technique for the evaluation of transparent materials. Via optoacoustic conversion, ultrashort pump laser pulses launch coherent acoustic pulses in the sample. Time-delayed ultrashort probe laser pulses monitor the propagation of the coherent acoustic pulses via the photo-elastic effect, which induces light scattering.

View Article and Find Full Text PDF

Energy harvesting is a concept which makes dissipated heat useful by transferring thermal energy to other excitations. Most of the existing principles are realized in systems which are heated continuously. We present the concept of high-frequency energy harvesting where the dissipated heat in a sample excites resonant magnons in a thin ferromagnetic metal layer.

View Article and Find Full Text PDF

Characterization of microstructure, chemistry and function of energy materials remains a challenge for instrumentation science. This active area of research is making considerable strides with methodologies that employ bright X-rays, electron microscopy, and optical spectroscopy. However, further development of instruments capable of multimodal measurements, is necessary to reveal complex microstructure evolution in realistic environments.

View Article and Find Full Text PDF

Nonlinear acoustic metamaterials offer the potential to enhance wave control opportunities beyond those already demonstrated via dispersion engineering in linear metamaterials. Managing the nonlinearities of a dynamic elastic system, however, remains a challenge, and the need now exists for new strategies to model and design these wave nonlinearities. Inspired by recent research on soft architected rotating-square structures, we propose herein a design for a nonlinear elastic metasurface with the capability to achieve nonlinear acoustic wave reflection control.

View Article and Find Full Text PDF

We present an optical technique based on ultrafast photoacoustics to determine the local temperature distribution profile in liquid samples in contact with a laser heated optical transducer. This ultrafast pump-probe experiment uses time-domain Brillouin scattering (TDBS) to locally determine the light scattering frequency shift. As the temperature influences the Brillouin scattering frequency, the TDBS signal probes the local laser-induced temperature distribution in the liquid.

View Article and Find Full Text PDF

An analytical theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous plate material on the Lamb waves near the S zero group velocity point is developed. The theory predicts that the main effect of the hysteretic quadratic nonlinearity consists in the modification of the frequency and the induced absorption of the Lamb modes. The effects of the nonlinear self-action in the propagating and standing Lamb waves are expected to be, respectively, nearly twice and three times stronger than those in the plane propagating acoustic waves.

View Article and Find Full Text PDF

The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3.

View Article and Find Full Text PDF

By means of an ultrafast optical technique, we track focused gigahertz coherent phonon pulses in objects down to sub-micron in size. Infrared light pulses illuminating the surface of a single metal-coated silica fibre generate longitudinal-phonon wave packets. Reflection of visible probe light pulses from the fibre surface allows the vibrational modes of the fibre to be detected, and Brillouin optical scattering of partially transmitted light pulses allows the acoustic wavefronts inside the transparent fibre to be continuously monitored.

View Article and Find Full Text PDF

Picosecond laser ultrasonics is an all-optical experimental technique based on ultrafast high repetition rate lasers applied for the generation and detection of nanometric in length coherent acoustic pulses. In optically transparent materials these pulses can be detected not only on their arrival at the sample surfaces but also all along their propagation path inside the sample providing opportunity for imaging of the sample material spatial inhomogeneities traversed by the acoustic pulse. Application of this imaging technique to polycrystalline elastically anisotropic transparent materials subject to high pressures in a diamond anvil cell reveals their significant texturing/structuring at the spatial scales exceeding dimensions of the individual crystallites.

View Article and Find Full Text PDF

Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon.

View Article and Find Full Text PDF