Publications by authors named "Vitaly Sineshchekov"

Phytochrome (phy) system in plants comprising a small number of phytochromes with phyA and phyB as major ones is responsible for acquiring light information in the red-far-red region of the solar spectrum. It provides optimal strategy for plant development under changing light conditions throughout all its life cycle beginning from seed germination and seedling establishment to fruiting and plant senescence. The phyA was shown to participate in the regulation of this cycle which is especially evident at its early stages.

View Article and Find Full Text PDF

Phytochrome A (phyA) comprises two native types, phyA' and phyA″, with distinct spectroscopic, photochemical, and functional properties, differing at the N-terminal extension, probably, by the state of phosphorylation. To find out if and how protein phosphatases (PP) affect the state of the phyA species in planta, we studied the effect of the non-specific phosphatase inhibitor NaF on etiolated maize seedlings with the use of low-temperature fluorescence spectroscopy and photochemistry. In roots, phosphatase inhibition facilitated photoreceptor destruction in its labile phyA' form and shifted the phyA'/phyA″ ratio towards the more stable phyA″.

View Article and Find Full Text PDF

Interaction between phytochromes and hormones is becoming one of the major issues in plant photophysiology. In this work, effects of defense-related jasmonic acid (JA) on phytochrome A (phyA) were investigated by fluorescence spectroscopy making use of two JA biosynthesis mutants of rice: cpm2 with the inactivated gene allene oxide cyclase and hebiba with additional genes deleted. Constant far-red light (FRc) mediated by phyA reduced its content in the wild type (WT) and mutants, and brought about domination of its light-stable pool (phyA″) in WT and light-labile pool (phyA') in the mutants.

View Article and Find Full Text PDF

The evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain - bilins and cyclic - chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins.

View Article and Find Full Text PDF

Phytochrome A (phyA) mediates different photoresponses what may be connected with the existence of its two types, phyA' and phyA'', differing by spectroscopic, photochemical and functional properties. We investigated a role of phyA phosphorylation in their formation turning to transgenic Arabidopsis thaliana (L. Heynh.

View Article and Find Full Text PDF

Low-temperature fluorescence investigations of phyA-GFP used in experiments on its nuclear-cytoplasmic partitioning were carried out. In etiolated hypocotyls of phyA-deficient Arabidopsis thaliana expressing phyA-GFP, it was found that it is similar to phyA in spectroscopic parameters with both its native types, phyA' and phyA'', present and their ratio shifted towards phyA'. In transgenic tobacco hypocotyls, native phyA and rice phyA-GFP were also identical to phyA in the wild type whereas phyA-GFP belonged primarily to the phyA' type.

View Article and Find Full Text PDF

We report a low-temperature fluorescence spectroscopy study of the PAS-GAF-PHY sensory module of Cph1 phytochrome, its Y263F mutant (both with known 3D structures) as well as Y263H and Y263S to connect their photochemical parameters with intramolecular interactions. None of the holoproteins showed photochemical activity at low temperature, and the activation barriers for the Pr→lumi-R photoreaction (2.5-3.

View Article and Find Full Text PDF

Phytochrome A (phyA), the most versatile plant phytochrome, exists in the two isoforms, phyA' and phyA'', differing by the character of its posttranslational modification, possibly, by phosphorylation at the N-terminal extension [Sineshchekov, V. (2010) J. Botany 2010, Article ID 358372].

View Article and Find Full Text PDF

Phytochromes are biliprotein photoreceptors that can be photoswitched between red-light-absorbing state (Pr) and far-red-light-absorbing state (Pfr). Although three-dimensional structures of both states have been reported, the photoconversion and intramolecular signaling mechanisms are still unclear. Here, we report UV-Vis absorbance, fluorescence and CD spectroscopy along with various photochemical parameters of the wild type and Y263F, Y263H and Y263S mutants of the Cph1 photosensory module, as well as a 2.

View Article and Find Full Text PDF

Cyanobacterial phytochromes are a diverse family of light receptors controlling various biological functions including phototaxis. In addition to canonical bona fide phytochromes of the well characterized Cph1/plant-like clade, cyanobacteria also harbor phytochromes that absorb green, violet or blue light. The Synechocystis PCC 6803 Cph2 photoreceptor, a phototaxis inhibitor, is unconventional in bearing two distinct chromophore-binding GAF domains.

View Article and Find Full Text PDF

Fluorescence investigations of phytochrome (phy) in rice (Oryza sativa L. cv. Nipponbare) mutants deficient in phyA, phyB and phyA plus phyB were performed.

View Article and Find Full Text PDF

Phytochrome A (phyA) is a versatile plant photoreceptor that mediates responses to brief light exposures (very low fluence responses, VLFR) as well as to prolonged irradiation (high irradiance responses, HIR). We identified the phyA-303 mutant allele of Arabidopsis thaliana bearing an R384K substitution in the GAF subdomain of the N-terminal half of phyA. phyA-303 showed reduced phyA spectral activity, almost normal VLFR, and severely impaired HIR.

View Article and Find Full Text PDF

Phytochrome (phy) A in its two native isoforms (phyA' and phyA") and the active (Pchlide(655)) and inactive (Pchlide(633)) protochlorophyllides were investigated by low-temperature fluorescence spectroscopy in the tips of rice (Oryza sativa L. Japonica cv Nihonmasari) coleoptiles from wild type (WT) and the jasmonate-deficient mutant hebiba. The seedlings were either grown in the dark or under pulsed (FRp) or continuous (FRc) far-red light (lambda(a) >/= 720 nm) of equal fluences.

View Article and Find Full Text PDF

Phytochrome A (phyA) is an important photoreceptor controlling many processes throughout the plant life cycle. It is unique within the phytochrome family for its ability to mediate photomorphogenic responses to continuous far-red light and for the strong photocontrol of its transcript level and protein stability. Here we describe a dominant mutant of garden pea (Pisum sativum) that displays dramatically enhanced responses to light, early photoperiod-independent flowering, and impaired photodestruction of phyA.

View Article and Find Full Text PDF

Autophosphorylation of phytochrome A (phyA) and transphosphorylation of its reaction partners, phytochrome kinase substrate 1 (PKS1) in particular, might play important functions in signal transduction from phyA. It was shown that PKS1 and PKS2 physically interact with phyA and phyB in vitro, and that overexpression of PKS1 interferes with phytochrome signaling in vivo. Moreover, both pks1 and pks2 loss of function mutants are specifically defective for one branch of phyA signaling.

View Article and Find Full Text PDF