Publications by authors named "Vitaly Polunovsky"

While selective estrogen receptor modulators, such as tamoxifen, have contributed to increased survival in patients with hormone receptor-positive breast cancer, the development of resistance to these therapies has led to the need to investigate other targetable pathways involved in oncogenic signaling. Approval of the mTOR inhibitor everolimus in the therapy of secondary endocrine resistance demonstrates the validity of this approach. Importantly, mTOR activation regulates eukaryotic messenger RNA translation.

View Article and Find Full Text PDF

Translation initiation factor eIF4E mediates normal cell proliferation, yet induces tumorigenesis when overexpressed. The mechanisms by which eIF4E directs such distinct biologic outputs remain unknown. We found that mouse mammary morphogenesis during pregnancy and lactation is accompanied by increased cap-binding capability of eIF4E and activation of the eIF4E-dependent translational apparatus, but only subtle oscillations in eIF4E abundance.

View Article and Find Full Text PDF

Mitogen activated translation initiation factor eIF4E mediates normal cell proliferation, yet induces tumorigenesis when deregulated and overexpressed. It remains unknown, how activated eIF4E directs such distinct biological outputs. Our experimental data provide evidence that distinct threshold levels of eIF4E govern its biological output in lactating mammary glands and that eIF4E overexpression in the context of cell population expansion can initiate malignant transformation by enabling cells to evade DNA damage checkpoints caused by hyperproliferative oncogenic stimuli.

View Article and Find Full Text PDF

We introduce here the inaugural issue of the new scientific journal Translation. The overarching aim of this endeavor is to establish a new forum for a broad spectrum of research in the area of protein synthesis in living systems ranging from structural biochemical, evolutionary and regulatory aspects of translation to the fundamental questions related to post-translational control of somatic phenomena in multicellular organisms including human behavior and health. The journal will publish high quality research articles, provide novel insights, ask provocative questions and discuss new hypothesis in this emerging field.

View Article and Find Full Text PDF

Pulmonary fibrosis is a severe lung disease characterized by sustained propagation of lung fibroblasts and relentless accumulation of extracellular matrix (ECM). Idiopathic pulmonary fibrosis (IPF) is the most severe chronic form of pulmonary fibrosis and results both in the gradual exchange of normal lung parenchyma with fibrotic tissue and in the irreversible impairment of gas exchange in the lung. Despite the urgency for novel therapies in IPF treatment, there is no effective and proven medical therapy available.

View Article and Find Full Text PDF

Notwithstanding their genetic complexity, different cancers share a core group of perturbed pathways converging upon a few regulatory nodes that link the intracellular-signaling network with the basic metabolic machinery. The clear implication of this view for cancer therapy is that instead of targeting individual genetic alterations one by one, the next generation of cancer therapeutics will target critical hubs in the cancer network. One such hub is the translation-initiation complex eIF4F, which integrates several cancer-related pathways into a self-amplifying signaling system.

View Article and Find Full Text PDF

Cancer cells tend to be more highly dependent on cap-dependent translation than normal tissues. Thus, proteins involved in the initiation of cap-dependent translation have emerged as potential anti-cancer drug targets. Cap-dependent translation is initiated by the binding of the factor eIF4E to the cap domain of mRNA.

View Article and Find Full Text PDF

Despite their genetic diversity, different cancers manifest common features at the protein pathway level. They share a core group of perturbed pathways that converge upon a few regulatory hubs linking the cellular signaling network with the basic metabolic machinery. Available evidence indicates that one such hub is the eIF4F-mediated cap-dependent mRNA translation initiation apparatus, whose integrity is required for physiological control of growth, proliferation and viability.

View Article and Find Full Text PDF

Aberrant regulation of cap-dependent translation has been frequently observed in the development of cancer. Association of the cap-binding protein eIF4E with N(7)-methylated guanosine capped mRNA is the rate limiting step governing translation initiation; and therefore represents an attractive process for cancer drug discovery. Previously, replacement of the 7-Me group of the Me(7)-guanosine monophosphate with a benzyl group has been found to increase binding affinity to eIF4E.

View Article and Find Full Text PDF

The usurping of translational control by sustained activation of translation initiation factors is oncogenic. Here, we show that the primary negative regulators of these oncogenic initiation factors--the 4E-BP protein family--operate as guardians of a translational control checkpoint in lung tumor defense. When challenged with the tobacco carcinogen 4-(methylnitrosamino)-I-(3-pyridyl)-1-butanone (NNK), 4ebp1(-/-)/4ebp2(-/-) mice showed increased sensitivity to tumorigenesis compared with their wild-type counterparts.

View Article and Find Full Text PDF

Normal growth and development depends upon high fidelity regulation of cap-dependent translation initiation, a process that is usurped and redirected in cancer to mediate acquisition of malignant properties. The epithelial-to-mesenchymal transition (EMT) is a key translationally regulated step in the development of epithelial cancers and pathological tissue fibrosis. To date, no compounds targeting EMT have been developed.

View Article and Find Full Text PDF

One of the earliest steps in translation initiation is recognition of the mRNA cap structure (m7GpppX) by the initiation factor eIF4E. Studies of interactions between purified eIF4E and its binding partners provide important information for understanding mechanisms underlying translational control in normal and cancer cells. Numerous impediments of the available methods used for eIF4E purification led us to develop a novel methodology for obtaining fractions of eIF4E free from undesired by-products.

View Article and Find Full Text PDF

Pathologic redirection of translational control by constitutive activation of eukaryotic translation initiation factor 4F (eIF4F), the cap-dependent translation initiation apparatus, is an obligatory step in oncogenesis; however, its mechanism remains undefined. Here, we simulate this pro-oncogenic state by overexpressing eIF4E, the rate-limiting component of eIF4F, in primary human mammary epithelial cells (HMECs) and examine the resultant changes in cell biology and gene expression profiles of total and polyribosome-bound mRNA genome wide. Overexpressed eIF4E rescues primary HMECs from telomere-independent growth arrest and disables checkpoints governing S-phase entry as well as apoptosis in HMECs immortalized by telomerase, imparting cells with proliferative and survival autonomy.

View Article and Find Full Text PDF

Deregulation of a plethora of cancer genes causes pathological changes in only a small set of pathways that confer a cell with malignant properties. This principle of convergence of oncogenic signaling-the ability of several hundred oncogenes to focus their effects on a few critical regulatory nodes that impart autonomy to the cell-motivates the search for putative focal points. Genomic, transcriptional and posttranslational mechanisms that regulate the function of cancer gene pathways are all well established.

View Article and Find Full Text PDF

Aberrant activation of the translation initiation machinery is a common property of malignant cells, and is essential for breast carcinoma cells to manifest a malignant phenotype. How does sustained activation of the rate limiting step in protein synthesis so fundamentally alter a cell? In this report, we test the post transcriptional operon theory as a possible mechanism, employing a model system in which apoptosis resistance is conferred on NIH 3T3 cells by ectopic expression of eIF4E. We show (i) there is a set of 255 transcripts that manifest an increase in translational efficiency during eIF4E-mediated escape from apoptosis; (ii) there is a novel prototype 55 nt RNA consensus hairpin structure that is overrepresented in the 5'-untranslated region of translationally activated transcripts; (iii) the identified consensus hairpin structure is sufficient to target a reporter mRNA for translational activation under pro-apoptotic stress, but only when eIF4E is deregulated; and (iv) that osteopontin, one of the translationally activated transcripts harboring the identified consensus hairpin structure functions as one mediator of the apoptosis resistance seen in our model.

View Article and Find Full Text PDF

Aberrant hyperactivation of the cap-dependent protein synthesis apparatus has been documented in a wide range of solid tumors, including epithelial carcinomas, but causal linkage has only been established in breast carcinoma. In this report, we sought to determine if targeted disruption of deregulated cap-dependent translation abrogates tumorigenicity and enhances cell death in non-small cell lung cancer (NSCLC). NSCLC cell lines were stably transfected with either wild-type 4E-BP1 (HA-4E-BP1) or the dominant-active mutant 4E-BP1(A37/A46) (HA-TTAA).

View Article and Find Full Text PDF

Cap-dependent translation is initiated by the binding of eIF4E to capped mRNA (m(7)GpppN). We have prepared a small library of 7-methyl guanosine nucleoside and nucleotide analogs and evaluated their ability to inhibit eIF4E binding to 7-methyl GTP with a competitive eIF4E binding immunoassay. 5'-H-Phosphonate derivatives in which the 2'- and 3'-riboside hydroxyls were tethered together by an isopropylidene group were shown to be a new class of inhibitors of eIF4E binding to capped mRNA.

View Article and Find Full Text PDF

Common human malignancies acquire derangements of the translation initiation complex, eIF4F, but their functional significance is unknown. Hypophosphorylated 4E-BP proteins negatively regulate eIF4F assembly by sequestering its mRNA cap binding component eIF4E, whereas hyperphosphorylation abrogates this function. We found that breast carcinoma cells harbor increases in the eIF4F constituent eIF4GI and hyperphosphorylation of 4E-BP1 which are two alterations that activate eIF4F assembly.

View Article and Find Full Text PDF

Eukaryotic translation initiation factor 4E (eIF4E) is the mRNA cap-binding protein required for translation of cellular mRNAs utilizing the 5' cap structure. The rate-limiting factor for mRNA recruitment to ribosomes, eIF4E is a major target for regulation of translation by growth factors, hormones, and other extracellular stimuli. When overexpressed, eIF4E exerts profound effects on cell growth and survival, leading to suppression of oncogene-dependent apoptosis, causing malignant transformation and conferring tumors with multiple drug resistance.

View Article and Find Full Text PDF

Eukaryotic translation initiation factor 4E (eIF4E) markedly reduces cellular susceptibility to apoptosis. However, the mechanism by which the translation apparatus operates on the cellular apoptotic machinery remains uncertain. Here we show that eIF4E-mediated rescue from Myc-dependent apoptosis is accompanied by inhibition of mitochondrial cytochrome c release.

View Article and Find Full Text PDF

Translational control has been recently added to well-recognized genomic, transcriptional, and posttranslational mechanisms regulating apoptosis. We previously found that overexpressed eukaryotic initiation factor 4E (eIF4E) rescues cells from apoptosis, while ectopic expression of wild-type eIF4E-binding protein 1 (4E-BP1), the most abundant member of the 4E-BP family of eIF4E repressor proteins, activates apoptosis--but only in transformed cells. To test the possibility that nontransformed cells require less cap-dependent translation to suppress apoptosis than do their transformed counterparts, we intensified the level of translational repression in nontransformed fibroblasts.

View Article and Find Full Text PDF