Endoglucanases (EGLs) are important components of multienzyme cocktails used in the production of a wide variety of fine and bulk chemicals from lignocellulosic feedstocks. However, a low thermostability and the loss of catalytic performance of EGLs at industrially required temperatures limit their commercial applications. A structure-based disulfide bond (DSB) engineering was carried out in order to improve the thermostability of EGLII from .
View Article and Find Full Text PDFThe gene lpmo1 encoding Penicillium verruculosum lytic polysaccharide monooxygenase (PvLPMO9A) was sequenced and homologously overexpressed in P. verruculosum B1-537 (ΔniaD) auxotrophic strain under the control of the cbh1 gene promoter in combination with either the cbh1 signal sequence (sCBH1-X series of samples) or the native lpmo1 signal sequence (sLPMO1-X series). Three enzyme samples of the sCBH1-X series were characterized by a lower overall content of cellobiohydrolases (CBHs: 26-45%) but slightly higher content of endoglucanases (EGs: 17-23%) relative to the reference B1-537 preparation (60% of CBHs and 14% of EGs), while the PvLPMO9A content in them made up 9-21% of the total secreted protein.
View Article and Find Full Text PDFThe dexA gene encoding Penicillium funiculosum dextranase (GenBank accession MH581385) belonging to family 49 of glycoside hydrolases (GH49) was cloned and heterologously expressed in two recipient strains, P. canescens RN3-11-7 and P. verruculosum B1-537.
View Article and Find Full Text PDFBackground: Penicillium verruculosum is an efficient producer of highly active cellulase multienzyme system. One of the approaches for enhancing cellulase performance in hydrolysis of cellulosic substrates is to enrich the reaction system with β -glucosidase and/or accessory enzymes, such as lytic polysaccharide monooxygenases (LPMO) displaying a synergism with cellulases.
Results: Genes bglI, encoding β-glucosidase from Aspergillus niger (AnBGL), and eglIV, encoding LPMO (formerly endoglucanase IV) from Trichoderma reesei (TrLPMO), were cloned and expressed by P.
Endoglucanase IIa from Penicillium verruculosum (PvCel5A) has three potential N-glycosylation sites: Asn19, Asn42 and Asn194. In order to study the role of N-glycosylation, the wild type (wt) PvCel5A and its mutant forms, carrying Asn to Ala substitutions, were cloned into Penicillium canescens. All forms of the rPvCel5A were successfully expressed and purified for characterization.
View Article and Find Full Text PDF