Publications by authors named "Vitaly Nagy"

Accidental high-dose radiation exposures can lead to multi-organ injuries, including radiation dermatitis. The types of cellular damage leading to radiation dermatitis are not completely understood. To identify the cellular mechanisms that underlie radiation-induced skin injury in vivo, we evaluated the time-course of cellular effects of radiation (14, 16 or 17 Gy X-rays; 0.

View Article and Find Full Text PDF

An assessment of multiple biomarkers from radiation casualties undergoing limited- or full-supportive care including treatment with filgrastim is critical to develop rapid and effective diagnostic triage strategies. The efficacy of filgrastim with full-supportive care was compared with results with limited-supportive care by analyzing survival, necropsy, histopathology and serial blood samples for hematological, serum chemistry and protein profiles in a non-human primate (Macaca mulatta, male and female) model during 60-d post-monitoring period following sham- and total-body irradiation with 6.5 Gy Co gamma-rays at 0.

View Article and Find Full Text PDF

Damage to normal lung tissue is a limiting factor when ionizing radiation is used in clinical applications. In addition, radiation pneumonitis and fibrosis are a major cause of mortality following accidental radiation exposure in humans. Although clinical symptoms may not develop for months after radiation exposure, immediate events induced by radiation are believed to generate molecular and cellular cascades that proceed during a clinical latent period.

View Article and Find Full Text PDF

Background: The animal efficacy rule addressing development of drugs for selected disease categories has pointed out the need to develop alternative large animal models. Based on this rule, the pathophysiology of the disease in the animal model must be well characterized and must reflect that in humans. So far, manifestations of the acute radiation syndrome (ARS) have been extensively studied only in two large animal models, the non-human primate (NHP) and the canine.

View Article and Find Full Text PDF

Additional large animal models for the acute radiation syndrome (ARS) would facilitate countermeasure development. We demonstrate here that Gottingen minipigs develop hematopoietic ARS symptoms similar to those observed in canines, non-human primates (NHPs) and humans. Dosimetry for whole-body γ irradiation (0.

View Article and Find Full Text PDF

Threats of nuclear and other radiologic exposures have been increasing, but no countermeasure for acute radiation syndrome has been approved by regulatory authorities. Because of their similarity to humans in regard to physiology and anatomy, we are characterizing Gottingen minipigs as a model to aid the development of radiation countermeasures. Irradiated minipigs exhibit immunosuppression, severe thrombocytopenia, vascular leakage, and acute inflammation.

View Article and Find Full Text PDF

The present communication describes the technical aspects of the first application of an imaging plate for visualization of (90)Sr deposited in human teeth. The teeth were obtained from Techa River area residents who were exposed as a result of releases of radioactivity into the Techa River by the first Soviet nuclear plant Mayak in the early 1950s. The investigations form the basis for an experimental procedure for accurate mapping of the distribution of (90)Sr in teeth with an imaging plate.

View Article and Find Full Text PDF