The ability of a cold-shock protein CspD from to protect both dicots and monocots against various pathogens is well confirmed under both greenhouse and field conditions; however, the molecular basis of this phenomenon at the transcriptomic level still remains unexplored. Expression profiles of some marker genes associated with SAR/ISR nonspecific resistance pathways and ROS scavengers were examined in CspD-treated plants, and the RNA-seq analysis of CspD-treated plants was first carried out. The ISR markers PDF1.
View Article and Find Full Text PDFThe ability of the MF3 protein from to protect plants by inducing their resistance to pathogenic fungi, bacteria, and viruses is well confirmed both in greenhouses and in the field; however, the molecular basis of this phenomenon remains unexplored. To find a relationship between the primary (and spatial) structure of the protein and its target activity, we analyzed the inducing activity of a set of mutants generated by alanine scanning and an alpha-helix deletion (ahD) in the part of the MF3 molecule previously identified by our group as a 29-amino-acid peptide working as the inducer on its own. Testing the mutants' inducing activity using the "tobacco-tobacco mosaic virus" pathosystem revealed that some of them showed an almost threefold (V60A and V62A) or twofold (G51A, L58A, ahD) reduction in inducing activity compared to the wild-type MF3 type.
View Article and Find Full Text PDFcauses glume and leaf blotch of wheat, a harmful disease resulting in serious losses in grain yield. In many countries including Russia, fungicidal formulations based on triazoles and on triazoles combined with strobilurins are used to control this fungus. However, their prolonged application may promote the selection of fungicide-resistant strains of leading to significant attenuation or even loss of fungicidal effect.
View Article and Find Full Text PDFThymol, a secondary plant metabolite possessing antifungal and chemosensitizing activities, disrupts cell wall or membrane integrity and interferes with ergosterol biosynthesis. Thymol also functions as a redox-active compound inducing generation of reactive oxygen species and lipid peroxidation in fungal cells. Previously, we showed thymol significantly enhanced the growth inhibitory effect of difenoconazole against and .
View Article and Find Full Text PDFThere are increasing environmental risks associated with extensive use of fungicides for crop protection. Hence, the use of new approaches using natural plant defense mechanisms, including application of plant antimicrobial peptides (AMPs), is of great interest. Recently, we studied the structural-function relationships between antifungal activity and five hevein-like AMPs from the WAMP (wheat AMP) family of Dorof.
View Article and Find Full Text PDFAgricultural fungicides contaminate the environment and promote the spread of fungicide-resistant strains of pathogenic fungi. The enhancement of pathogen sensitivity to these pesticides using chemosensitizers allows the reducing of fungicide dosages without a decrease in their efficiency. Using Petri plate and microplate bioassays, 6-demethylmevinolin (6-DMM), a putative sensitizer of a microbial origin, was shown to affect both colony growth and conidial germination of , , , , and four species (, , ) forming a wheat root rot complex together with .
View Article and Find Full Text PDFInt J Mol Sci
October 2020
hevein-like antimicrobial peptides; antifungal activity; antifungal determinants; synergy; chemosensitization; tebuconazole; plant pathogenic fungi.
View Article and Find Full Text PDFThis paper reports the first results on obtaining an enzyme preparation that might be promising for the simultaneous decontamination of plant feeds contaminated with a polyketide fusariotoxin, zearalenone (ZEN), and enhancing the availability of their nutritional components. A novel ZEN-specific lactonohydrolase (ZHD) was expressed in a strain PCA-10 that was developed previously as a producer of different hydrolytic enzymes for feed biorefinery. The recombinant ZHD secreted by transformed fungal clones into culture liquid was shown to remove the toxin from model solutions, and was able to decontaminate wheat grain artificially infected with a zearalenone-producing .
View Article and Find Full Text PDFViral and bacterial diseases of potato cause significant yield loss worldwide. The current data on the occurrence of these diseases in Russia do not provide comprehensive understanding of the phytosanitary situation. Diagnostic systems based on disposable stationary open qPCR micromatrices intended for the detection of eight viral and seven bacterial/oomycetal potato diseases have been used for wide-scale screening of target pathogens to estimate their occurrence in 11 regions of Russia and to assess suitability of the technology for high-throughput diagnostics under conditions of field laboratories.
View Article and Find Full Text PDFFungal diseases of plants are of great economic importance causing 70⁻80% of crop losses associated with microbial plant pathogens. Advanced on-site disease diagnostics is very important to maximize crop productivity. In this study, diagnostic systems have been developed for simultaneous detection and identification of six fungal pathogens using 48-well microarrays (micromatrices) for qPCR.
View Article and Find Full Text PDFInt J Mol Sci
December 2018
Plants, including L., are constantly attacked by various pathogens which induce immune responses. Immune processes in plants are tightly regulated by proteases from different families within their degradome.
View Article and Find Full Text PDFAIMS Microbiol
March 2018
Use of chemical pesticides poses a threat for environment and human health, so green technologies of crop protection are of high demand. Some microbial proteins able to activate plant defense mechanisms and prevent the development of resistance in plant pathogens, may be good alternative to chemicals, but practical use of such elicitors is limited due to need to protect them against adverse environment prior their delivery to target receptors of plant cells. In this study we examined a possibility to encapsulate heat resistant FKBP-type peptidyl prolyl cis-trans isomerase (PPIase) from , which possesses a significant eliciting activity in relation to a range of plant pathogens, in sodium alginate microparticles and evaluated the stability of resulted complex under long-term UV irradiation and in the presence of proteinase K, as well as its eliciting activity in three different "plant-pathogen" models comparing to that of free PPIase.
View Article and Find Full Text PDFAflatoxins and melanins are the products of a polyketide biosynthesis. In this study, the search of potential inhibitors of the aflatoxin B1 (AFB1) biosynthesis was performed among compounds blocking the pigmentation in fungi. Four compounds-three natural (thymol, 3-hydroxybenzaldehyde, compactin) and one synthetic (fluconazole)-were examined for their ability to block the pigmentation and AFB1 production in .
View Article and Find Full Text PDFBackground: Aflatoxin B1 (AFB1), produced by Aspergillus flavus, is one of the most life threatening food contaminants causing significant economic losses worldwide. Biological AFB1 degradation by microorganisms, or preferably microbial enzymes, is considered as one of the most promising approaches.
Objectives: The current work aimed to study the AFB1-degrading metabolites, produced by Phoma glomerata PG41, sharing a natural substrate with aflatoxigenic A.
A common consequence of using agricultural fungicides is the development of resistance by fungal pathogens, which undermines reliability of fungicidal effectiveness. A potentially new strategy to aid in overcoming or minimizing this problem is enhancement of pathogen sensitivity to fungicides, or "chemosensitization." Chemosensitization can be accomplished by combining a commercial fungicide with a certain non- or marginally fungicidal substance at levels where, alone, neither compound would be effective.
View Article and Find Full Text PDF