Publications by authors named "Vitaly A Sineshchekov"

Phytochrome (phy) system in plants comprising a small number of phytochromes with phyA and phyB as major ones is responsible for acquiring light information in the red-far-red region of the solar spectrum. It provides optimal strategy for plant development under changing light conditions throughout all its life cycle beginning from seed germination and seedling establishment to fruiting and plant senescence. The phyA was shown to participate in the regulation of this cycle which is especially evident at its early stages.

View Article and Find Full Text PDF

The evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain - bilins and cyclic - chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins.

View Article and Find Full Text PDF

Phytochrome A (phyA) mediates different photoresponses what may be connected with the existence of its two types, phyA' and phyA'', differing by spectroscopic, photochemical and functional properties. We investigated a role of phyA phosphorylation in their formation turning to transgenic Arabidopsis thaliana (L. Heynh.

View Article and Find Full Text PDF

Cyanobacterial phytochromes are a diverse family of light receptors controlling various biological functions including phototaxis. In addition to canonical bona fide phytochromes of the well characterized Cph1/plant-like clade, cyanobacteria also harbor phytochromes that absorb green, violet or blue light. The Synechocystis PCC 6803 Cph2 photoreceptor, a phototaxis inhibitor, is unconventional in bearing two distinct chromophore-binding GAF domains.

View Article and Find Full Text PDF

Phytochrome A (phyA) is a versatile plant photoreceptor that mediates responses to brief light exposures (very low fluence responses, VLFR) as well as to prolonged irradiation (high irradiance responses, HIR). We identified the phyA-303 mutant allele of Arabidopsis thaliana bearing an R384K substitution in the GAF subdomain of the N-terminal half of phyA. phyA-303 showed reduced phyA spectral activity, almost normal VLFR, and severely impaired HIR.

View Article and Find Full Text PDF

Phytochrome (phy) A in its two native isoforms (phyA' and phyA") and the active (Pchlide(655)) and inactive (Pchlide(633)) protochlorophyllides were investigated by low-temperature fluorescence spectroscopy in the tips of rice (Oryza sativa L. Japonica cv Nihonmasari) coleoptiles from wild type (WT) and the jasmonate-deficient mutant hebiba. The seedlings were either grown in the dark or under pulsed (FRp) or continuous (FRc) far-red light (lambda(a) >/= 720 nm) of equal fluences.

View Article and Find Full Text PDF

Phytochrome A (phyA) is an important photoreceptor controlling many processes throughout the plant life cycle. It is unique within the phytochrome family for its ability to mediate photomorphogenic responses to continuous far-red light and for the strong photocontrol of its transcript level and protein stability. Here we describe a dominant mutant of garden pea (Pisum sativum) that displays dramatically enhanced responses to light, early photoperiod-independent flowering, and impaired photodestruction of phyA.

View Article and Find Full Text PDF