Publications by authors named "Vitaliy Melamud"

The possibility of selective Cu and Zn leaching from the sample of old pyrite tailings, which is one of the most widespread types of solid waste forming during non-ferrous metal production, using sulfuric acid solutions and water was studied. It was shown that water leaching provided selective extraction of Cu and Zn and comparatively low iron ion extraction. At the same time, acid leaching provided the obtainment of pregnant solutions with high ferric ion concentration, which can be used for oxidative leaching of substandard copper concentrates.

View Article and Find Full Text PDF

In the present study, the effect of additional carbon sources (carbon dioxide and molasses) on the bio-oxidation of a pyrite-arsenopyrite concentrate at temperatures of 40-50 °C was studied, and novel data regarding the patterns of the bio-oxidation of gold-bearing sulfide concentrates and the composition of the microbial populations performing these processes were obtained. At 40 °C, additional carbon sources did not affect the bio-oxidation efficiency. At the same time, the application of additional carbon dioxide improved the bio-oxidation performance at temperatures of 45 and 50 °C and made it possible to avoid the inhibition of bio-oxidation due to an increase in the temperature.

View Article and Find Full Text PDF

Bioleaching may be effectively used to extract nonferrous metals from sulfide ores and concentrates. At the same time, some minerals are refractory and their bioleaching rate is often comparatively low that does not allow the required metal extraction rate to be achieved. In the present work, we studied the two-stage process, which included stages of biological and chemical leaching, to improve copper extraction from low grade Cu-Zn sulfide concentrate containing chalcopyrite, tennantite, pyrite, and sphalerite.

View Article and Find Full Text PDF

Tank bio-oxidation is a biohydrometallurgical technology widely used for metal recovery from sulfide concentrates. Since carbon availability is one of the key factors affecting microbial communities, it may also determine the rate of sulfide concentrate bio-oxidation. The goal of the present work was to evaluate the effect of carbon sources on the bio-oxidation of the concentrate containing 56% pyrite and 14% arsenopyrite at different temperatures (40 and 50 °C) in stirred tank reactors.

View Article and Find Full Text PDF