Publications by authors named "Vitaliy Gavrilyuk"

Brain abscesses arise from a focal parenchymal infection by various pathogens, particularly Staphylococcus aureus. We have shown that astrocytes are activated upon exposure to S. aureus and may contribute to the excessive tissue damage characteristic of brain abscess.

View Article and Find Full Text PDF

Loss of Locus coeruleus (LC) noradrenergic (NA) neurons occurs in several neurodegenerative conditions including Alzheimer's disease (AD). In vitro and in vivo studies have shown that NA influences several features of AD disease including inflammation, neurodegeneration, and cognitive function. In the current study we tested if LC loss influenced beta amyloid (Abeta) plaque deposition.

View Article and Find Full Text PDF

The authors previously showed that conditioned media (CM) from activated microglia increased inducible nitric oxide synthase (NOS2) in cortical neurons. Here they examined the ability of noradrenaline (NA) to reduce neuronal NOS2 or cell death. Primary mouse cortical neurons were activated using CM from microglia incubated with lipopolysaccharide (LPS).

View Article and Find Full Text PDF

The neurotransmitter noradrenaline (NA) exerts important antiinflammatory effects on glial cells including suppression of the inducible form of nitric oxide synthase (NOS2). The authors examined the consequences of manipulating NA in vivo by treating adult rats with the neurotoxin DSP4, which selectively lesions noradrenergic neurons of the locus ceruleus (LC), and reduces cortical NA levels. Following LC lesion, intracortical injection of aggregated amyloid beta 1-42 (Abeta1-42) caused appearance of NOS2 within neurons, and increased neuronal damage assessed by staining for nonphosphorylated neurofilament proteins with antibody SMI-32.

View Article and Find Full Text PDF

Agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma) exert anti-inflammatory and anti-proliferative effects which led to testing of these drugs in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. In contrast, the effect of PPARdelta (PPARdelta) agonists in EAE is not yet known. We show that oral administration of the selective PPARdelta agonist GW0742 reduced clinical symptoms in C57BL/6 mice that had been immunized with encephalitogenic myelin oligodendrocyte glycoprotein (MOG) peptide.

View Article and Find Full Text PDF

Brain inflammation is regulated by endogenous substances, including neurotransmitters such as noradrenaline (NA), which can increase anti-inflammatory genes. To identify NA-regulated, anti-inflammatory genes, we used TOGA (total gene expression analysis) to screen rat astrocyte-derived RNA. NA-inducible cDNA clone DST11 encodes an isoform of the complement C5a receptor (C5aR), with 39% identity at the amino acid level to the rat C5aR, and 56% identity to a recently described human C5aR variant termed C5L2 (complement 5a-like receptor).

View Article and Find Full Text PDF

BACKGROUND: Under pathological conditions, microglia produce proinflammatory mediators which contribute to neurologic damage, and whose levels can be modulated by endogenous factors including neurotransmitters such as norepinephrine (NE). We investigated the ability of NE to suppress microglial activation, in particular its effects on induction and activity of the inducible form of nitric oxide synthase (NOS2) and the possible role that IL-1beta plays in that response. METHODS: Rat cortical microglia were stimulated with bacterial lipopolysaccharide (LPS) to induce NOS2 expression (assessed by nitrite and nitrate accumulation, NO production, and NOS2 mRNA levels) and IL-1beta release (assessed by ELISA).

View Article and Find Full Text PDF

No studies have specifically addressed whether cAMP can influence nitric oxide (NO)/cGMP-induced cerebral vasodilation. In this study, we examined whether cAMP can enhance or reduce NO-induced cerebral vasodilation in vivo via interfering with cGMP efflux or through potentiating phosphodiesterase 5 (PDE5)-mediated cGMP breakdown, respectively, in cerebral vascular smooth muscle cells (CVSMCs). To that end, we evaluated, in male rats, the effects of knockdown [via antisense oligodeoxynucleotide (ODN) applications] of the cGMP efflux protein multidrug resistance protein 5 (MRP5) and PDE5 inhibition on pial arteriolar NO donor [S-nitroso-N-acetyl penicillamine (SNAP)]-induced dilations in the absence and presence of cAMP elevations via forskolin.

View Article and Find Full Text PDF

Multidrug resistance protein 5 (MRP5) has been linked to cGMP cellular export in peripheral vascular smooth muscle cells (VSMCs) and is widely expressed in brain vascular tissue. In the present study, we examined whether knockdown of MRP5 in pial arterioles [via antisense oligodeoxynucleotide (ODN) applications] affected nitric oxide (NO)/cGMP-induced dilations. The antisense or (as a control) missense ODN was applied to the cortical surface approximately 24 h before study via closed cranial windows.

View Article and Find Full Text PDF

Cerebral inflammatory events play an important part in the pathogenesis of Alzheimer's disease (AD). Agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear hormone receptor that mediates anti-inflammatory actions of non-steroidal anti-inflammatory drugs (NSAIDs) and thiazolidinediones, have been therefore proposed as a potential treatment of AD. Experimental evidence suggests that cortical noradrenaline (NA) depletion due to degeneration of the locus ceruleus (LC) - a pathological hallmark of AD - plays a permissive role in the development of inflammation in AD.

View Article and Find Full Text PDF

The inflammatory responses in many cell types are reduced by noradrenaline (NA) binding to beta-adrenergic receptors. We previously demonstrated that cortical inflammatory responses to aggregated amyloid beta (Abeta) are increased if NA levels were first depleted by lesioning locus ceruleus (LC) noradrenergic neurons, which replicates the loss of LC occurring in Alzheimer's disease. To examine the molecular basis for increased responses, we used the selective neurotoxin DSP4 to lesion the LC, and then examined levels of putative anti-inflammatory molecules.

View Article and Find Full Text PDF

Activation of peroxisome proliferator-activated receptors (PPARs) can regulate brain physiology and provide protection in models of neurological disease; however, neither their exact targets nor mechanisms of action in brain are known. In many cells, PPAR gamma agonists increase glucose uptake and metabolism. Because astrocytes store glucose and provide lactate to neurons on demand, we tested effects of PPAR gamma agonists on astroglial glucose metabolism.

View Article and Find Full Text PDF

It is now well accepted that inflammatory events contribute to the pathogenesis of numerous neurological disorders, including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease, and AID's dementia. Whereas inflammation in the periphery is subject to rapid down regulation by increases in anti-inflammatory molecules and the presence of scavenging soluble cytokine receptors, the presence of an intact blood-brain barrier may limit a similar autoregulation from occurring in brain. Mechanisms intrinsic to the brain may provide additional immunomodulatory functions, and whose dysregulation could contribute to increased inflammation in disease.

View Article and Find Full Text PDF

The development of clinical symptoms in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE) involves T-cell activation and migration into the central nervous system, production of glial-derived inflammatory molecules, and demyelination and axonal damage. Ligands of the peroxisome proliferator-activated receptor (PPAR) exert anti-inflammatory effects on glial cells, reduce proliferation and activation of T cells, and induce myelin gene expression. We demonstrate in two models of EAE that orally administered PPARgamma ligand pioglitazone reduced the incidence and severity of monophasic, chronic disease in C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein peptide and of relapsing disease in B10.

View Article and Find Full Text PDF

The neurotransmitter norepinephrine (NE) can inhibit inflammatory gene expression in glial cells; however, the mechanisms involved are not clear. In primary astrocytes, NE dose-dependently increased the expression of inhibitory I kappa B alpha protein accompanied by an increase in steady state levels of I kappa B alpha mRNA. Maximal increases were observed at 30-60 min for the mRNA and at 4 h for protein, and these effects were mediated by NE binding to beta-adrenergic receptors.

View Article and Find Full Text PDF

The production of nitric oxide by the inflammatory isoform of nitric oxide synthase (NOS2) in brain glial cells is thought to contribute to the causes and development of neurological diseases and trauma. We previously demonstrated that activation of a heat shock response (HSR) by hyperthermia reduced NOS2 expression in vitro, and in vivo attenuated the clinical and histological symptoms of the demyelinating disease experimental autoimmune encephalomyelitis (EAE; Heneka et al. [2001] J.

View Article and Find Full Text PDF