Publications by authors named "Vitaliy G Shevchenko"

A number of thioether-containing zirconium siloxanes, differing in their composition and metal atom shielding degree with a siloxy substituent, were synthesized and characterized. Synthesis of such compounds made it possible to evaluate the effect of sulfur atoms' presence in the cured compositions on their dielectric properties, as well as to evaluate their curing ability and influence on mechanical characteristics compared to the sulfur-free analogs obtained earlier. Studying a wide range of compositions differing in their content and ratio of metallosiloxane and silica components revealed that such systems are still typical dielectrics.

View Article and Find Full Text PDF

The review examines the effect of radio-frequency superradiance during pulsed mechanochemical activation of polymer composites under high pressure. Mechanochemical activation is implemented in three modes: (a) rheological explosion of polymer composite under rapid uniaxial compression, when an elastic wave pulse occurs in a polymer composite sample and implements the physico-chemical transformations leading to the occurrence of a superradiance pulse; (b) parametric mode, when an elastic wave pulse is introduced from the outside through a waveguide into a composite sample; (c) the mode of rapid pressure release, which also leads to the occurrence of a superradiance pulse. Paramagnetic polymer composites-namely polystyrene-binuclear clusters Co(QH)-O-Co(QH) or Mn(QH)-O-Mn(QH), where QH is a ligand based on QH-3,6-di-tert-butylpyrocatechin)-are considered as objects implementing such processes.

View Article and Find Full Text PDF

In this review, we summarize recent developments in the field of the mechanochemistry of polymers. The aim of the review is to consider the consequences of mechanical forces and actions on polymers and polymer synthesis. First, we review classical works on chemical reactions and polymerization processes under strong shear deformations.

View Article and Find Full Text PDF

Dielectric properties of two series of magnetoactive elastomers (MAEs) based on a soft silicone matrix containing 35 vol% of magnetic particles were studied experimentally in a wide temperature range. In the first series, a hybrid filler representing a mixture of magnetically hard NdFeB particles of irregular shape and an average size of 50 μm and magnetically soft carbonyl iron (CI) of 4.5 μm in diameter was used for MAE fabrication.

View Article and Find Full Text PDF