Publications by authors named "Vitalii Petranovskii"

Here, we report the results of our H nuclear magnetic resonance study of the dynamics of water molecules confined in zeolites (mordenite and ZSM-5 structures) with hierarchical porosity (micropores in zeolite lamella and mesopores formed by amorphous SiO in the inter-lamellar space). H nuclear magnetic resonance (NMR) spectra show that water experiences complex behavior within the temperature range from 173 to 298 K. The temperature dependence of H spin-lattice relaxation evidences the presence of three processes with different activation energies: freezing (about 30 kJ/mol), fast rotation (about 10 kJ/mol), and translational motion of water molecules (23.

View Article and Find Full Text PDF

The formation and properties of silver and iron nanoscale components in the Ag-Fe bimetallic system deposited on mordenite depend on several parameters during their preparation. Previously, it was shown that an important condition for optimizing nano-center properties in a bimetallic catalyst is to change the order of sequential deposition of components; the order "first Ag, then Fe" was chosen as optimal. In this work, the influence of exact Ag/Fe atomic proportion on the system's physicochemical properties was studied.

View Article and Find Full Text PDF

COVID-19 has drawn worldwide attention to the need for personal protective equipment. Face masks can be transformed from passive filters into active protection. For this purpose, it is sufficient to apply materials with oligodynamic effect to the fabric of the masks, which makes it possible to destroy infectious agents that have fallen on the mask with aerosol droplets from the air stream.

View Article and Find Full Text PDF

Multimetallic systems, instead of monometallic systems, have been used to develop materials with diverse supported species to improve their catalytic, antimicrobial activity, etc., properties. The changes in the types of nanospecies obtained through the thermal reduction of ternary Ag-Cu-Zn/mordenite systems in hydrogen, followed by their cooling in an air or hydrogen atmosphere, were studied.

View Article and Find Full Text PDF

Zeolites are materials of undeniable importance for science and technology. Since the properties of zeolites can be tuned after the inclusion of additional chemical species into the zeolitic framework, it is necessary to study the nature of zeolites after modification with transition metals to understand the new properties that were obtained, and with this information, novel applications can be proposed. This paper reports a solvent-free approach for the rapid synthesis of zeolites modified with iron and/or iron oxide particles.

View Article and Find Full Text PDF

A chabazite-type zeolite was prepared by the hydrothermal method. Before ion exchange, the chabazite was activated with ammonium chloride (NHCl). The ion exchange process was carried out at a controlled temperature and constant stirring to obtain ion-exchanged chabazites of Ti chabazite (TiCHA), Zn chabazite (ZnCHA), Cu chabazite (CuCHA), Ag chabazite (AgCHA) and Au chabazite (AuCHA).

View Article and Find Full Text PDF

This article reviews the current state and development of thermal catalytic processes using transition metals (TM) supported on zeolites (TM/Z), as well as the contribution of theoretical studies to understand the details of the catalytic processes. Structural features inherent to zeolites, and their corresponding properties such as ion exchange capacity, stable and very regular microporosity, the ability to create additional mesoporosity, as well as the potential chemical modification of their properties by isomorphic substitution of tetrahedral atoms in the crystal framework, make them unique catalyst carriers. New methods that modify zeolites, including sequential ion exchange, multiple isomorphic substitution, and the creation of hierarchically porous structures both during synthesis and in subsequent stages of post-synthetic processing, continue to be discovered.

View Article and Find Full Text PDF

Mesostructured pillared zeolite materials in the form of lamellar phases with a crystal structure of mordenite (MOR) and ZSM-5 (MFI) were grown using CTAB as an agent that creates mesopores, in a one-pot synthesis; then into the CTAB layers separating the 2D zeolite plates were introduced by diffusion the TEOS molecules which were further hydrolyzed, and finally the material was annealed to remove the organic phase, leaving the 2D zeolite plates separated by pillars of silicon dioxide. To monitor the successive structural changes and the state of the atoms of the zeolite framework and organic compounds at all the steps of the synthesis of pillared MOR and MFI zeolites, the nuclear magnetic resonance method (NMR) with magic angle spinning (MAS) was applied. The Al and Si MAS NMR spectra confirm the regularity of the zeolite frameworks of the as synthetized materials.

View Article and Find Full Text PDF

This article presents the results of a comprehensive study of copper-exchanged mordenite samples prepared from its ammonia and protonated forms (Si/Al = 10) using two different ion exchange methods: conventional and microwave (MW)-assisted. The protonated H-MOR-10 sample was obtained by calcination of commercial NHMOR-10; in this case, a slight degradation of the mordenite framework was observed, but the resulting defects were partially restored after the first ion-exchange procedure of protons for copper ions. The level of copper exchange in the studied materials was found to be limited to 70%.

View Article and Find Full Text PDF

Due to the nanoporous nature of zeolitic materials, they can be used as gas adsorbents. This paper describes the effect of critical admission temperature through narrow pores of natural ERI zeolites at low levels of coverage. This phenomenon occurs by adsorption of CH₄ and H₂ on pores in natural erionite.

View Article and Find Full Text PDF

The filling of channels in porous media with particles of a material can be interpreted in a first approximation as a packing of spheres in cylindrical recipients. Numerous studies on micro- and nanoscopic scales show that they are, as a rule, not ideal cylinders. In this paper, the channels, which have an irregular shape and a circular cross-section, as well as the packing algorithms are investigated.

View Article and Find Full Text PDF

The natural mordenite from Palmarito de Cauto deposit (PZ), Cuba, was studied in this work as an ion exchanger to remove Cr(3+) cations from alkaline aqueous solutions at different pH and chromium concentrations. The mordenite stability under cyclic treatment processes with alkaline solutions and its capacity to decrease the pH of the solutions was also analyzed. It was shown that PZ removes Cr(3+) ions from alkaline solutions, and it happens independently of the starting chromium concentration and the pH of the exchange solution used.

View Article and Find Full Text PDF

Optical properties of Cu clusters embedded in mordenite are studied experimentally and theoretically. In this work we discuss spectral features of the system at various reduction steps and compare then with the results of spectra obtained within a theoretical model. The model employed consists of Cu clusters embedded in a homogeneous matrix.

View Article and Find Full Text PDF

Copper-silver bimetallic system supported on natural clinoptilolite from Tasajeras deposit (Cuba) was studied. Bimetallic samples were prepared by simultaneous ion exchange, and reduced in a wide temperature range in a hydrogen flow. The main goal of the work was analysis of the mutual influence of both metals on their reduction process and the properties of the resultant particles.

View Article and Find Full Text PDF