Publications by authors named "Visvesvara G"

This Practical Guidance for Clinical Microbiology document on the laboratory diagnosis of parasites from the gastrointestinal tract provides practical information for the recovery and identification of relevant human parasites. The document is based on a comprehensive literature review and expert consensus on relevant diagnostic methods. However, it does not include didactic information on human parasite life cycles, organism morphology, clinical disease, pathogenesis, treatment, or epidemiology and prevention.

View Article and Find Full Text PDF

Background: Microsporidia are intracellular obligate parasites traditionally associated with immunosuppressed patients; their detection in immunocompetent patients has increased, highlighting their possible importance as emerging pathogens. Detection of spores in stools, urine, body fluids and tissues is difficult and immunological techniques such as immunofluorescence have proved to be a useful and reliable tool in the diagnosis of human microsporidiosis. For this reason, we have produced and characterized monoclonal antibodies (MAbs) specific for Encephalitozoon intestinalis (the second most frequent microsporidian infecting humans), and other Encephalitozoon species, that can be used in different diagnostic techniques.

View Article and Find Full Text PDF

In April 2014, a kidney transplant recipient in the United States experienced headache, diplopia, and confusion, followed by neurologic decline and death. An investigation to evaluate the possibility of donor-derived infection determined that 3 patients had received 4 organs (kidney, liver, heart/kidney) from the same donor. The liver recipient experienced tremor and gait instability; the heart/kidney and contralateral kidney recipients were hospitalized with encephalitis.

View Article and Find Full Text PDF

Background: During 2009 and 2010, 2 clusters of organ transplant-transmitted Balamuthia mandrillaris, a free-living ameba, were detected by recognition of severe unexpected illness in multiple recipients from the same donor.

Methods: We investigated all recipients and the 2 donors through interview, medical record review, and testing of available specimens retrospectively. Surviving recipients were tested and treated prospectively.

View Article and Find Full Text PDF

Primary amebic meningoencephalitis (PAM) is a fulminant central nervous system infection caused by the thermophilic free-living ameba Naegleria fowleri. Few survivals have been documented and adequate treatment is lacking. We report 2 PAM cases, 1 fatal and 1 surviving, treated with the novel antiparasitic agent miltefosine.

View Article and Find Full Text PDF

Background: Primary amoebic meningoencephalitis (PAM) is a rapidly progressing waterborne illness that predominately affects children and is nearly always fatal. PAM is caused by Naegleria fowleri, a free-living amoeba found in bodies of warm freshwater worldwide.

Methods: We reviewed exposure location, clinical signs and symptoms, diagnostic modalities, and treatment from confirmed cases of PAM diagnosed in the United States during 1937-2013.

View Article and Find Full Text PDF
Article Synopsis
  • Neoplasms can occur in invertebrates but not in tapeworms; however, a case was found where cells from a patient with HIV showed cancer-like features and were linked to tapeworm infection.
  • These abnormal cells were identified as originating from Hymenolepis nana, though they did not resemble typical tapeworm tissue and were detectable through specific staining and genetic assays.
  • The study reveals a new link between tapeworm infection and cancer, showing that genetically altered tapeworm cells can invade human tissue, presenting a novel mechanism for disease.
View Article and Find Full Text PDF

Balamuthia mandrillaris, a free-living ameba, causes rare but frequently fatal granulomatous amebic encephalitis (GAE). Few patients have survived after receiving experimental drug combinations, with or without brain lesion excisions. Some GAE survivors have been treated with a multi-drug regimen including miltefosine, an investigational anti-leishmanial agent with in vitro amebacidal activity.

View Article and Find Full Text PDF

Balamuthia mandrillaris is a rare cause of human infection, but when infections do occur, they result in high rates of morbidity and mortality. A case of disseminated Balamuthia infection is presented. Early diagnosis and initiation of recommended therapy are essential for increased chances of successful outcomes.

View Article and Find Full Text PDF

Balamuthia mandrillaris is a free-living ameba (FLA) that has been isolated or its DNA identified in soil, dust and water. It causes a fatal central nervous system infection in humans and animals. Although it is environmental as Acanthamoeba and Naegleria fowleri, the two other free-living amebae that also cause CNS infections in humans and other animals, Balamuthia does not feed on bacteria as the other FLA.

View Article and Find Full Text PDF

Since 2005, black-tailed prairie dogs (Cynomys ludovicianus) have been collected for use as research animals from field sites in Kansas, Colorado, and Texas. In January of 2012, Giardia trophozoites were identified by histology, thin-section electron microscopy, and immunofluorescent staining in the lumen of the small intestine and colon of a prairie dog euthanized because of extreme weight loss. With giardiasis suspected as the cause of weight loss, a survey of Giardia duodenalis in the laboratory colony of prairie dogs was initiated.

View Article and Find Full Text PDF

Naegleria fowleri is a thermophilic, free-living ameba that causes primary amebic meningoencephalitis. The infections are nearly always fatal. We present the third well-documented survivor of this infection in North America.

View Article and Find Full Text PDF

A liver, heart, iliac vessel and two kidneys were recovered from a 39-year-old man who died of traumatic head injury and were transplanted into five recipients. The liver recipient 18 days posttransplantation presented with headache, ataxia and fever, followed by rapid neurologic decline and death. Diagnosis of granulomatous amebic encephalitis was made on autopsy.

View Article and Find Full Text PDF

Background: Encephalitozoon cuniculi, a microsporidial species most commonly recognized as a cause of renal, respiratory, and central nervous system infections in immunosuppressed patients, was identified as the cause of a temporally associated cluster of febrile illness among 3 solid organ transplant recipients from a common donor.

Objective: To confirm the source of the illness, assess donor and recipient risk factors, and provide therapy recommendations for ill recipients.

Design: Public health investigation.

View Article and Find Full Text PDF

Balamuthia mandrillaris causes granulomatous amoebic encephalitis, which is frequently fatal. There are few reports of survival in children. A 4-year-old child developed severe meningoencephalitis with multiple intracranial ring-enhancing lesions.

View Article and Find Full Text PDF

Granulomatous amebic encephalitis (GAE) from Balamuthia mandrillaris, a free-living ameba, has a case fatality rate exceeding 90% among recognized cases in the USA. In August 2010, a GAE cluster occurred following transplantation of infected organs from a previously healthy landscaper in Tucson, AZ, USA, who died from a suspected stroke. As B.

View Article and Find Full Text PDF

Primary amebic meningoencephalitis (PAM) caused by the free-living ameba (FLA) Naegleria fowleri is a rare but rapidly fatal disease of the central nervous system (CNS) affecting predominantly young, previously healthy persons. No effective chemotherapeutic prophylaxis or treatment has been identified. Recently, three transplant-associated clusters of encephalitis caused by another FLA, Balamuthia mandrillaris, have occurred, prompting questions regarding the suitability of extra-CNS solid organ transplantation from donors with PAM.

View Article and Find Full Text PDF

Balamuthia mandrillaris is an emerging cause of subacute granulomatous amebic encephalitis (GAE). The diagnosis of this infection has proven to be difficult and is usually made postmortem. Early recognition and treatment may offer some benefit.

View Article and Find Full Text PDF

Acanthamoeba is the most common cause of granulomatous amebic encephalitis, a typically fatal condition that is classically described as indolent and slowly progressive. We report a case of Acanthamoeba encephalitis in a kidney transplant recipient that progressed to death within 3 days of symptom onset and was diagnosed at autopsy. We also review clinical characteristics, treatments, and outcomes of all published cases of Acanthamoeba encephalitis in solid organ transplant (SOT) recipients.

View Article and Find Full Text PDF

Acanthamoeba spp. are free-living amoebae that are ubiquitous in natural environments. They can cause cutaneous, nasopharyngeal, and disseminated infection, leading to granulomatous amebic encephalitis (GAE) in immunocompromised individuals.

View Article and Find Full Text PDF

Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri are mitochondria-bearing, free-living eukaryotic amebae that have been known to cause infections of the central nervous system (CNS) of humans and other animals. Several species of Acanthamoeba belonging to several different genotypes cause an insidious and chronic disease, granulomatous amebic encephalitis (GAE), principally in immunocompromised hosts including persons infected with HIV/AIDS.

View Article and Find Full Text PDF

Although Balamuthia mandrillaris was identified more than two decades ago as an agent of fatal granulomatous encephalitis in humans and other animals, little is known about its ecological niche, biological behavior in the environment, food preferences and predators, if any. When infecting humans or other animals, Balamuthia feeds on tissues; and in vitro culture, it feeds on mammalian cells (monkey kidney cells, human lung fibroblasts, and human microvascular endothelial cells). According to recent reports, it is believed that Balamuthia feeds on small amebae, for example, Acanthamoeba that are present in its ecological niche.

View Article and Find Full Text PDF

Primary amebic meningoencephalitis (PAM) is a rare but nearly always fatal infection of the central nervous system caused by the thermophilic, free-living ameba Naegleria fowleri. Since its first description in 1965 through 2010, 118 cases have been reported in the U.S.

View Article and Find Full Text PDF