This article demonstrates a scalable, time-division multiplexed biopotential recording front-end capable of real-time differential- and common-mode artifact suppression. A delta-encoded recording architecture exploits the power spectral density (PSD) characteristics of Electrocorticography (ECoG) recordings, combining an 8-bit ADC, and an 8-bit DAC to achieve 14 bits of dynamic range. The flexibility of the digital feedback architecture is leveraged to time-division multiplex 64 differential input channels onto a shared mixed-signal front-end, reducing channel area by 2x compared to the state-of-the-art.
View Article and Find Full Text PDFElectrocorticography (ECoG) is an important area of research for Brain-Computer Interface (BCI) development. ECoG, along with some other biopotentials, has spectral characteristics that can be exploited for more optimal front-end performance than is achievable with conventional techniques. This paper optimizes noise performance of such a system and discusses an equalization technique that reduces the analog-to-digital converter (ADC) dynamic range requirements and eliminates the need for a variable gain amplifier (VGA).
View Article and Find Full Text PDF