Publications by authors named "Visser S"

Nitrogenase is the enzyme primarily responsible for reducing atmospheric nitrogen to ammonia. There are three general forms of nitrogenase based on the metal ion present in the cofactor binding site, namely, molybdenum-dependent nitrogenases with the iron-molybdenum cofactor (FeMoco), the vanadium-dependent nitrogenases with FeVco, and the iron-only nitrogenases. It has been shown that the vanadium-dependent nitrogenases tend to have a lesser efficacy in reducing dinitrogen but a higher efficacy in binding and reducing carbon monoxide.

View Article and Find Full Text PDF

Background: The combination of high prices and uncertain effectiveness is a growing challenge in the field of orphan medicines, hampering health technology assessments. Hence, new methods for establishing price benchmarks might be necessary to support reimbursement negotiations. In this study, we applied several pricing models containing cost-based elements to the case of lumasiran for treating primary hyperoxaluria type 1.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) causes high worldwide infant mortality, as well as a high disease burden in the elderly. Efforts in vaccine development over the past 60 years have recently delivered three approved vaccines and two monoclonal antibodies (mAbs). Looking back at the eventful history of RSV vaccine development, several factors can be identified that have hampered the developmental pathway, including the occurrence of enhanced RSV disease (ERD) in the first vaccine attempt and the difficulty in characterizing and stabilizing the pre-fusion F protein as a vaccine target.

View Article and Find Full Text PDF

The enzyme carbonic anhydrase has been intensely studied over decades as a means to understand the role of zinc in hydrating CO. The naturally occurring enzyme has also been immobilized on distinct heterogeneous platforms, which results in a different hybrid class of catalysts that are useful for the adsorption and hydration of CO. However, the reusability and robustness of such natural and immobilized systems are substantially affected when tested under industrial conditions, such as high temperature and high flow rate.

View Article and Find Full Text PDF

The first-coordination sphere of catalysts is known to play a crucial role in reaction mechanisms, but details of how equatorial ligands influence the reactivity remain unknown. Heteroatom ligated to the equatorial position of iron centers in nonheme iron metalloenzymes modulates structure and reactivity. To investigate the impact of equatorial heteroatom substitution on chlorite oxidation, we synthesized and characterized three novel mononuclear nonheme iron(II) complexes with a pentadentate bispidine scaffold.

View Article and Find Full Text PDF

Access to new medicines is crucial for patients but increasingly sparks discussion due to high prices. Simultaneously, the growing emphasis on specialized products and uncertainty surrounding the long-term effectiveness of new drug classes brought to the market underscore the need for innovative pricing approaches. A systematic literature review of pharmaceutical pricing models, accompanied by a critical appraisal, was conducted to offer insights contributing to novel approaches balancing sustainable pharmaceutical innovation with affordability and accessibility for patients.

View Article and Find Full Text PDF

Background: The process of vascular development is essential for shaping complex craniofacial structures. Investigating the interplay between vascular development and orofacial morphogenesis holds critical importance in clinical practice and contributes to advancing our comprehension of (vascular) developmental biology. New insights into specific vascular developmental pathways will have far-reaching implications across various medical disciplines, enhancing clinical understanding, refining surgical techniques, and elucidating the origins of congenital abnormalities.

View Article and Find Full Text PDF

During gliotoxin biosynthesis in fungi, the cytochrome P450 GliF enzyme catalyzes an unusual C-N ring-closure step while also an aromatic ring is hydroxylated in the same reaction cycle, which may have relevance to drug synthesis reactions in biotechnology. However, as the details of the reaction mechanism are still controversial, no applications have been developed yet. To resolve the mechanism of gliotoxin biosynthesis and gain insight into the steps leading to ring-closure, we ran a combination of molecular dynamics and density functional theory calculations on the structure and reactivity of P450 GliF and tested a range of possible reaction mechanisms, pathways and models.

View Article and Find Full Text PDF

The nonheme iron dioxygenase capreomycin C (CmnC) hydroxylates a free L-arginine amino acid regio- and stereospecifically at the C-position as part of the capreomycin antibiotics biosynthesis. Little is known on its structure, catalytic cycle and substrate specificity and, therefore, a comprehensive computational study was performed. A large QM cluster model of CmnC was created of 297 atoms and the mechanisms for C-H, C-H and C-H hydroxylation and C-C desaturation were investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Myelofibrosis is a chronic condition that involves bone marrow issues, spleen enlargement, anemia, and can reduce life expectancy to about 6 years after diagnosis.
  • Current treatments like JAK inhibitors can help with symptoms but often worsen anemia, which negatively affects survival rates; however, momelotinib is a new JAK inhibitor that also improves anemia.
  • Momelotinib works by targeting both the JAK-STAT signaling pathway and the ACVR1 receptor, leading to reduced spleen size and better blood cell production, with a recommended dose of 200 mg taken once daily.
View Article and Find Full Text PDF

In non-small-cell lung cancer (NSCLC), improving local control through radiotherapy dose escalation might improve survival. However, a photon-based RCT showed increased organ at risk dose exposure and worse overall survival in the dose escalation arm. In this study, intensity-modulated proton therapy plans with dose escalation to the primary tumour were created for 20 NSCLC patients.

View Article and Find Full Text PDF

The ability to introduce noncanonical amino acids as axial ligands in heme enzymes has provided a powerful experimental tool for studying the structure and reactivity of their Fe=O ("ferryl") intermediates. Here, we show that a similar approach can be used to perturb the conserved Fe coordination environment of 2-oxoglutarate (2OG) dependent oxygenases, a versatile class of enzymes that employ highly-reactive ferryl intermediates to mediate challenging C-H functionalizations. Replacement of one of the cis-disposed histidine ligands in the oxygenase VioC with a less electron donating -methyl-histidine (MeHis) preserves both catalytic function and reaction selectivity.

View Article and Find Full Text PDF

Enzymes turnover substrates into products with amazing efficiency and selectivity and as such have great potential for use in biotechnology and pharmaceutical applications. However, details of their catalytic cycles and the origins surrounding the regio- and chemoselectivity of enzymatic reaction processes remain unknown, which makes the engineering of enzymes and their use in biotechnology challenging. Computational modelling can assist experimental work in the field and establish the factors that influence the reaction rates and the product distributions.

View Article and Find Full Text PDF

The cytochrome P450 homolog, TxtE, efficiently catalyzes the direct and regioselective aromatic nitration of the indolyl moiety of L-tryptophan to 4-nitro-L-tryptophan, using nitric oxide (NO) and dioxygen (O) as co-substrates. Pathways for such direct and selective nitration of heteroaromatic motifs present platforms for engineering new nitration biocatalysts for pharmacologically beneficial targets, among a medley of other pivotal industrial applications. Precise mechanistic details concerning this pathway are only weakly understood, albeit a heme iron(III)-peroxynitrite active species has been postulated.

View Article and Find Full Text PDF

Background: In patients with interstitial lung disease (ILD), exercise-induced desaturation during the 6-min walk test (6MWT), specifically nadir oxygen saturation (nSpO2) of ≤88 % is a negative prognostic marker. As the 6MWT is often impractical for ILD patients, the aim of this study is to compare the 1-min sit-to-stand test (1minSTS) with the 6MWT to detect exercise-induced desaturation.

Methods: Participants were recruited from a tertiary referral clinic with both tests performed on the same day.

View Article and Find Full Text PDF

Cannabidiol (CBD), the main non-intoxicating compound in cannabis, has been hypothesized to reduce the adverse effects of Δ-tetrahydrocannabinol (THC), the main psychoactive and analgesic component of cannabis. This clinical trial investigated the hypothesis that CBD counteracts the adverse effects of THC and thereby potentially improves the tolerability of cannabis as an analgesic. A randomized, double-blind, placebo-controlled, five-way cross-over trial was performed in 37 healthy volunteers.

View Article and Find Full Text PDF

Decades of research have demonstrated that a variety of cognitive biases can affect our judgment and ability to make rational decisions in personal and professional environments. The lengthy, risky, and costly nature of pharmaceutical research and development (R&D) makes it vulnerable to biased decision-making. Moreover, cognitive biases can play a role in regulatory and clinical decision-making, the latter impacting diagnostic and treatment decisions in the therapeutic use of medicines.

View Article and Find Full Text PDF

Houseflies provide a good experimental model to study the initial evolutionary stages of a primary sex-determining locus because they possess different recently evolved proto-Y chromosomes that contain male-determining loci (M) with the same male-determining gene, Mdmd. We investigate M-loci genomically and cytogenetically revealing distinct molecular architectures among M-loci. M on chromosome V (M) has two intact Mdmd copies in a palindrome.

View Article and Find Full Text PDF

Background: Visualizing (micro)vascular structures remains challenging for researchers and clinicians due to limitations in traditional radiological imaging methods. Exploring the role of vascular development in craniofacial malformations in experimental settings can enhance understanding of these processes, with the effectiveness of high-resolution imaging techniques being crucial for successful research in this field. Micro-CT imaging offers 3D microstructural insights, but requires contrast-enhancing staining agents (CESAs) for visualizing (micro)-vascular tissues, known as contrast-enhanced micro-CT (CECT).

View Article and Find Full Text PDF

Aims: To evaluate relationships between plasma concentrations of belantamab mafodotin, total monoclonal antibody, and its payload and changes in electrocardiogram (ECG) parameters in patients with relapsed or refractory multiple myeloma from the DREAMM-1 and DREAMM-2 studies.

Methods: Hysteresis plots and linear regression analyses of pharmacokinetic (PK) analyte (belantamab mafodotin, total monoclonal antibody, and cytotoxic cysteine-maleimidocaproyl monomethyl auristatin F payload) concentrations vs. time-matched ECG parameters (absolute/change from baseline in QT interval corrected for RR interval [QTc/ΔQTc] and QT interval corrected for heart rate by Fridericia's formula [QTcF/ΔQTcF]) were performed.

View Article and Find Full Text PDF

Using machine learning, molecular dynamics simulations, and density functional theory calculations we gain insight into the selectivity patterns of substrate activation by the cytochromes P450. In nature, the reactions catalyzed by the P450s lead to the biodegradation of xenobiotics, but recent work has shown that fungi utilize P450s for the activation of lignin fragments, such as monomer and dimer units. These fragments often are the building blocks of valuable materials, including drug molecules and fragrances, hence a highly selective biocatalyst that can produce these compounds in good yield with high selectivity would be an important step in biotechnology.

View Article and Find Full Text PDF

The nature of the axial ligand in high-valent iron-oxo heme enzyme intermediates and related synthetic catalysts is a critical structural element for controlling proton-coupled electron-transfer (PCET) reactivity of these species. Herein, we describe the generation and characterization of three new 6-coordinate, iron(IV)-oxo porphyrinoid-π-cation-radical complexes and report their PCET reactivity together with a previously published 5-coordinate analogue, Fe(O)(TBPCz) (TBPCz = octakis(--butylphenyl)corrolazinato) () (Cho, K. A high-valent iron-oxo corrolazine activates C-H bonds via hydrogen-atom transfer.

View Article and Find Full Text PDF