An advanced energy autonomous system that simultaneously harnesses and stores energy on the same platform offers exciting opportunities for the near-future self-powered miniature electronics. However, achieving optimal synchronization between the power output of an energy harvester and the storage unit or integrating it seamlessly with real-time microelectronics to build a highly efficient energy autonomous system remains challenging. Herein, a unique bimetallic layered double hydroxide (LDH) based tribo-positive layer is introduced for a high-voltage sliding triboelectric nanogenerator (S-TENG) with an output voltage of ≈1485 V and power output of 250 µW, respectively.
View Article and Find Full Text PDF