Lanthanide-based light-emitting coordination polymers (CPs) and CP gels (CPGs) have significance for applications in optical systems, image processing/multiplexing, and optical sensors. In this study, we report two new luminescent CPs (EuL-CP () and TbL-CP ()) and CPGs (EuL-gel () and TbL-gel ()) using lanthanide(III) ions (Ln(III) = Eu(III) and Tb(III)) and 4-(4-carboxyphenyl)-2,2:6,2-terpyridine ligand () capable of forming stable thermoreversible gels. Probable structures of EuL-CP () and TbL-CP () and the formations of EuL-gel () and TbL-gel () are proposed based on adequate computational studies.
View Article and Find Full Text PDFHigh-level pseudocapacitive materials require incorporations of significant redox regions into conductive and penetrable skeletons to enable the creation of devices capable of delivering high power for extended periods. Coordination nanosheets (CNs) are appealing materials for their high natural electrical conductivities, huge explicit surface regions, and semi-one-layered adjusted pore clusters. Thus, rational design of ligands and topological networks with desired electronic structure is required for the advancement in this field.
View Article and Find Full Text PDFElectrocatalytic water splitting provides a sustainable method for storing intermittent energies, such as solar energy and wind, in the form of hydrogen fuel. However, the oxygen evolution reaction (OER), constituting the other half-cell reaction, is often considered the bottleneck in overall water splitting due to its slow kinetics. Therefore, it is crucial to develop efficient, cost-effective, and robust OER catalysts to enhance the water-splitting process.
View Article and Find Full Text PDFThe growing energy demand with the widespread use of smart portable electronics, as well as an exponential increase in demand for smart batteries for electric vehicles, entails the development of efficient portable batteries with high energy density and safe power storage systems. Li-ion batteries arguably have superior energy density to all other traditional batteries. Developing mechanically robust solid-state electrolytes (SSEs) for lithium-ion conduction for an efficient portable energy storage unit is vital to empower this technology and overcome the safety constraints of liquid electrolytes.
View Article and Find Full Text PDFCrystalline two-dimensional organic nanosheets (2D-ONs) having atomic or near-atomic thickness with infinite lateral dimensions are of crucial significance for their possible application as a material for energy storage. The presence of nanofluidic channels with a designed array of molecular interlayers in such 2D-ONs, for a favorable lithium-ion transport, has special significance for improving the efficacy of lithium-ion batteries. However, the rational design of crystalline 2D-ONs remains a challenge because of the lack of appropriate monomers and convenient preparation methods.
View Article and Find Full Text PDF