Cidea and Cidec play an important role in regulating triglyceride storage in liver and adipose tissue. It is not known if the Cidea and Cidec genes respond to a high fat diet (HFD) or exercise training, two interventions that alter lipid storage. The purpose of the present study was to determine the effect of a HFD and voluntary wheel running (WR) on Cidea and Cidec mRNA and protein expression in adipose tissue and liver of mice.
View Article and Find Full Text PDFLipolysis in fat tissue represents a major source of circulating fatty acids. Previously, we have found that lipolysis in adipocytes is controlled by early growth response transcription factor Egr1 that directly inhibits transcription of adipose triglyceride lipase, ATGL (Chakrabarti, P., Kim, J.
View Article and Find Full Text PDFIn adipocytes, lipolysis is a highly regulated process involving hormonal signals, lipid droplet-associated proteins, and lipases. The discovery of new lipid droplet-associated proteins added complexity to the current model of lipolysis. In this study, we used cultured human adipocytes to demonstrate that fat-specific protein 27 (FSP27), an abundantly expressed protein in adipocytes, regulates both basal and stimulated lipolysis by interacting with adipose triglyceride lipase (ATGL, also called desnutrin or PNPLA2).
View Article and Find Full Text PDFThe Notch receptor family and its ligands (Delta-like and Jagged) have been found deregulated in several human cancers. We and the Aster/Pear group recently identified c-myc as a direct transcriptional target gene of the Notch1 pathway in T cell acute lymphoblastic leukemia (T-ALL). Although the oncogenic roles of c-Myc and Notch1 are established, a direct link between Notch1 and c-Myc had not been demonstrated.
View Article and Find Full Text PDFDNA microarray and genetic studies of Saccharomyces cerevisiae have demonstrated that histone deacetylases (HDACs) are required for transcriptional activation and repression, but the mechanism by which they activate transcription remains poorly understood. We show that two HDACs, RPD3 and HOS2, are required for the activation of DNA damage-inducible genes RNR3 and HUG1. Using mutants specific for the Rpd3L complex, we show that the complex is responsible for regulating RNR3.
View Article and Find Full Text PDFRecent work with mouse models and human leukemic samples has shown that gain-of-function mutation(s) in Notch1 is a common genetic event in T-cell acute lymphoblastic leukemia (T-ALL). The Notch1 receptor signals through a gamma-secretase-dependent process that releases intracellular Notch1 from the membrane to the nucleus, where it forms part of a transcriptional activator complex. To identify Notch1 target genes in leukemia, we developed mouse T-cell leukemic lines that express intracellular Notch1 in a doxycycline-dependent manner.
View Article and Find Full Text PDFStereospecific conversion of hydantoins into their carbamoyl acid derivatives could be achieved by using the enzyme hydantoinase. Specific hydantoinases convert either the D-form or the L-form of the hydantoin and the amino acids responsible for stereospecificity have not been identified. Structural studies on hydantoinases from a few bacterial species were published recently.
View Article and Find Full Text PDFHSP100 protein is an important component of the heat-shock response in diverse organisms. Using specific primers based on cDNA sequence, rice hsp101 gene was PCR-amplified and sequenced. Southern analysis revealed that there appears to be a single gene per haploid genome coding for HSP101 protein in rice.
View Article and Find Full Text PDFGene expression requires the recruitment of chromatin remodeling activities and general transcription factors (GTFs) to promoters. Whereas the role of activators in recruiting chromatin remodeling activities has been clearly demonstrated, the contributions of the transcription machinery have not been firmly established. Here we demonstrate that the remodeling of the RNR3 promoter requires a number of GTFs, mediator and RNA polymerase II.
View Article and Find Full Text PDF