The continuous demand of medicinally important scaffolds has prompted the synthetic chemists to identify simple and efficient routes for their synthesis. 1H-1,2,3-triazole, obtained by highly versatile, efficacious and selective "Click Reaction" has become a synthetic/medicinal chemist's favorite not only because of its ability to mimic different functional groups but also due to enhancement in the targeted biological activities. Triazole ring has also been shown to play a critical role in biomolecular mimetics, fragment-based drug design, and bioorthogonal methodologies.
View Article and Find Full Text PDFCorrection for 'Ferrocene-appended pharmacophores: an exciting approach for modulating the biological potential of organic scaffolds' by Amandeep Singh et al., Dalton Trans., 2019, DOI: 10.
View Article and Find Full Text PDFTwo exemplary contributions of organometallics in medicinal chemistry, ferroquine and ferrocifen, which exhibit excellent anti-plasmodial and anti-cancer activities, respectively, have opened a new field called medicinal organometallic chemistry. This field has been gaining significant interest due to the recent upsurge in ferrocene-linked organic frameworks with promising biological potential. The success of ferrocene is due to the sustained efforts by organic medicinal chemists and its inherent stability in air, heat and light, low toxicity, low cost and reversible redox properties.
View Article and Find Full Text PDFA series of C-3 thiourea functionalized β-lactams, β-lactam-7-chloroquinoline conjugates and 7-chloroquinoline-thiohydantoin derivatives were prepared with the aim of probing antimalarial structure-activity relationships. 7-Chlorquinoline-thiohydantoin derivatives were found to be potent inhibitors of cultured Plasmodium falciparum, with the most potent and non-cytotoxic compound exhibiting an IC50 of 39.8 nM.
View Article and Find Full Text PDF