ACS Appl Mater Interfaces
November 2021
Hybrid ion capacitors (HICs) are emerging as promising energy-storage devices exhibiting the advantages of both batteries and supercapacitors. However, the difference in the electrodes' specific capacities and rate capabilities makes it extremely challenging to achieve optimum mass balancing for a full-cell HIC device. Here, we demonstrate a method to predict well-performing mass ratios of electrodes for a Na-HIC by analyzing the capacities of anodes and cathodes as a function of the actual current densities experienced by the individual electrodes.
View Article and Find Full Text PDFThree-dimensional dendritic nanostructured carbon florets (NCFs) with tailored porosity are demonstrated as electrochemically versatile electrodes for both adsorptive and intercalative energy storage pathways. Achieved through a single-step template-driven approach, the NCFs exhibit turbostratic graphitic lamellae in a floral assembly leading to high specific surface area and multi-modal pore distribution (920 m/g). The synergism in structural and chemical frameworks, along with open-ended morphology, enables bifunctionality of hard carbon NCFs as symmetric adsorptive electrodes for supercapacitors (SCs) and intercalation anodes for hybrid potassium-ion capacitors (KICs).
View Article and Find Full Text PDF