Data-driven methods with deep neural networks demonstrate promising results for accurate modeling in soft robots. However, deep neural network models rely on voluminous data in discovering the complex and nonlinear representations inherent in soft robots. Consequently, while it is not always possible, a substantial amount of effort is required for data acquisition, labeling, and annotation.
View Article and Find Full Text PDFIEEE Trans Image Process
April 2023
Human-Object Interaction (HOI) detection recognizes how persons interact with objects, which is advantageous in autonomous systems such as self-driving vehicles and collaborative robots. However, current HOI detectors are often plagued by model inefficiency and unreliability when making a prediction, which consequently limits its potential for real-world scenarios. In this paper, we address these challenges by proposing ERNet, an end-to-end trainable convolutional-transformer network for HOI detection.
View Article and Find Full Text PDFSeveral studies on micro-expression recognition have contributed mainly to accuracy improvement. However, the computational complexity receives lesser attention comparatively and therefore increases the cost of micro-expression recognition for real-time application. In addition, majority of the existing approaches required at least two frames (i.
View Article and Find Full Text PDFSensory data are critical for soft robot perception. However, integrating sensors to soft robots remains challenging due to their inherent softness. An alternative approach is indirect sensing through an estimation scheme, which uses robot dynamics and available measurements to estimate variables that would have been measured by sensors.
View Article and Find Full Text PDF