The metalloid arsenic is one of the most conspicuous groundwater contaminants in the Indian subcontinent and its removal from aqueous medium is the main focus of this study. The study aims at functionalising melanin using iron and copper for the efficient removal of arsenic and rendering water fit for consumption. Melanin obtained from the marine bacteria Pseudomonas stutzeri was functionalised by iron impregnation (Fe-melanin) and copper impregnation (Cu-melanin).
View Article and Find Full Text PDFHeavy metals like mercury, chromium, lead and copper present in groundwater at lower concentrations cause severe health issues and can even be fatal when consumed. The biopigment/biopolymer melanin can be reaped from different sources like bacterium, fungus, and human hair. It has excellent heavy metal ion scavenging property and can be exploited for non-biological applications, substantially including water purification.
View Article and Find Full Text PDFHeavy metals are one of deadly contaminants in ground water across the globe. Thus, herein, this data set comprises experimental and modelled data on the removal of heavy metals from ground water using melanin synthesized by the marine bacteria . Characterization of biosynthesized melanin and modelling of the kinetic and the thermodynamic study on adsorption of heavy metals such as mercury (Hg(II)), lead (Pb(II)), chromium (Cr(VI)), and copper (Cu(II)) are included in this article.
View Article and Find Full Text PDFThe difficulty in removal of heavy metals at concentrations below 10 mg/L has led to the exploration of efficient adsorbents for removal of heavy metals. The adsorption capacity of biosynthesized melanin for Mercury (Hg(II)), Chromium (Cr(VI)), Lead (Pb(II)) and Copper (Cu(II)) was investigated at different operating conditions like pH, time, initial concentration and temperature. The heavy metals adsorption process was well illustrated by the Lagergren's pseudo-second-order kinetic model and the equilibrium data fitted excellently to Langmuir isotherm.
View Article and Find Full Text PDF