Long noncoding RNAs (lncRNAs) are increasingly implicated in the pathology of diabetic complications. Here, we examined the role of lncRNAs in monocyte dysfunction and inflammation associated with human type 2 diabetes mellitus (T2D). RNA sequencing analysis of CD14+ monocytes from patients with T2D versus healthy controls revealed downregulation of antiinflammatory and antiproliferative genes, along with several lncRNAs, including a potentially novel divergent lncRNA diabetes regulated antiinflammatory RNA (DRAIR) and its nearby gene CPEB2.
View Article and Find Full Text PDFObjective: Systemic low-grade inflammation associated with obesity and metabolic syndrome is a strong risk factor for the development of diabetes mellitus and associated cardiovascular complications. This inflammatory state is caused by release of proinflammatory cytokines by macrophages, especially in adipose tissue. Long noncoding RNAs regulate macrophage activation and inflammatory gene networks, but their role in macrophage dysfunction during diet-induced obesity has been largely unexplored.
View Article and Find Full Text PDFRationale: AngII (angiotensin II)-mediated vascular smooth muscle cell (VSMC) dysfunction plays a major role in hypertension. Long noncoding RNAs have elicited much interest, but their molecular roles in AngII actions and hypertension are unclear.
Objective: To investigate the regulation and functions of a novel long noncoding RNA growth factor- and proinflammatory cytokine-induced vascular cell-expressed RNA ( Giver), in AngII-mediated VSMC dysfunction.
Objective- Macrophages play key roles in inflammation and diabetic vascular complications. Emerging evidence implicates long noncoding RNAs in inflammation, but their role in macrophage dysfunction associated with inflammatory diabetic complications is unclear and was therefore investigated in this study. Approach and Results- RNA-sequencing and real-time quantitative PCR demonstrated that a long noncoding RNA Dnm3os (dynamin 3 opposite strand) is upregulated in bone marrow-derived macrophages from type 2 diabetic db/db mice, diet-induced insulin-resistant mice, and diabetic ApoE mice, as well as in monocytes from type 2 diabetic patients relative to controls.
View Article and Find Full Text PDFDiabetes leads to markedly accelerated rates of many associated macrovascular complications like hypertension and atherosclerosis, and microvascular complications like nephropathy and retinopathy. High glucose, the hallmark of diabetes, drives changes in vascular and inflammatory cells that promote the development of these complications. Understanding the molecular processes involved in the development of diabetes and its debilitating complications can lead to much needed newer clinical therapies.
View Article and Find Full Text PDF