The ALOG/LSH group of proteins is highly conserved across plant lineage, starting from moss to higher flowering plants, suggesting their crucial role in the evolution and adaptation of land plants. The role of ALOG proteins is highly conserved in various developmental responses, such as vegetative and reproductive developmental programs. Their role in meristem identity, cotyledon development, seedling photomorphogenesis and leaf and shoot development has been relatively well established.
View Article and Find Full Text PDFThe plant vasculature plays essential roles in the transport of water and nutrients and is composed of xylem and phloem, both of which originate from undifferentiated cells found in the cambium. Development of the different vascular tissues is coordinated by hormonal and peptide signals and culminates in extensive cell wall modifications. Pectins are key cell wall components that are modified during cell growth and differentiation, and pectin fragments function as signals in defence and cell wall integrity pathways, although their role as developmental signals remains tentative.
View Article and Find Full Text PDFArabidopsis MYC2 bHLH transcription factor plays a negative regulatory role in blue light (BL)-mediated seedling development. HY5 bZIP protein works as a positive regulator of multiple wavelengths of light and promotes photomorphogenesis. Both MYC2 and HY5, belonging to two different classes of transcription factors, are the integrators of multiple signaling pathways.
View Article and Find Full Text PDFRegulations of Arabidopsis seedling growth by two proteins, which belong to different classes of transcription factors, are poorly understood. MYC2 and GBF1 belong to bHLH and bZIP classes of transcription factors, respectively, and function in cryptochrome-mediated blue light signaling. Here, we have investigated the molecular and functional interrelation of MYC2 and GBF1 in blue light-mediated photomorphogenesis.
View Article and Find Full Text PDFMitogen-activated protein kinase (MAPK) pathways are involved in several signal transduction processes in eukaryotes. Light signal transduction pathways have been extensively studied in plants; however, the connection between MAPK and light signaling pathways is currently unknown. Here, we show that MKK3-MPK6 is activated by blue light in a MYC2-dependent manner.
View Article and Find Full Text PDF