A pair of Down syndrome (DS) human iPSCs (hiPSCs) and isogenic euploid hiPSCs generated by using an integration-free Sendai viral vector system showed trisomy 21 (47; XY) and typical (46; XY) karyotype respectively. Pluripotency of both hiPSC lines was confirmed by pluripotency marker expression and three germ layer differentiation potentials.
View Article and Find Full Text PDFImpaired neurogenesis in Down syndrome (DS) is characterized by reduced neurons, increased glial cells, and delayed cortical lamination. However, the underlying cause for impaired neurogenesis in DS is not clear. Using both human and mouse iPSCs, we demonstrate that DS impaired neurogenesis is due to biphasic cell cycle dysregulation during the generation of neural progenitors from iPSCs named the "neurogenic stage" of neurogenesis.
View Article and Find Full Text PDFHuman mouse chimeric models are valuable tools to develop in-vivo disease models. However, in-vivo detection of human cells limits their analysis. To facilitate in-vivo modeling of Down syndrome (DS), we generated a stable AAVS1-EGFP isogenic pair of DS human iPSCs by zinc finger mediated genetic engineering of the AAVS1 locus.
View Article and Find Full Text PDFHuman-induced pluripotent stem cells (hiPSCs) clones NSi001-A, NSi001-B, and NSi001-C were generated from a female individual of Indian origin having Robertsonian translocation down syndrome (DS) by reprogramming peripheral blood mononuclear cells (PBMCs) using integration-free Sendai viral vectors. The established hiPSCs clones had karyotype similar to the patient sample with Robertsonian translocation [46, XX rob (14;21)], normal ES-like morphology, expression of pluripotency markers, and potential for three germ layer differentiation, i.e.
View Article and Find Full Text PDF