Publications by authors named "Vishali Pathania"

Herein, we have developed a new class of organic photocatalysts that can mimic transition metals for several oxidative and reductive organic cross-coupling transformations. Due to its wide potential window in both the oxidation and reduction ranges, cinnoline exhibits dual catalytic activity under visible light illumination, acting as both a photoreductant and photooxidant.

View Article and Find Full Text PDF

The environmental benefits of molecular oxygen as the oxidizing agent in oxidation reactions that synthesize fine chemicals cannot be overstated. Increased interest in developing robust photocatalysts is stimulated by the fact that the current photocatalytic transformation boom has made previously inaccessible synthetic approaches possible. Motivated by enzymatic catalysis, employing a reusable phenalenyl-based photocatalyst, we have successfully developed oxidative dehydrogenation utilizing molecular oxygen as a greener oxidant.

View Article and Find Full Text PDF

Herein, we have established a phenalenyl-based molecular scaffold which serves as a potent photoreductant utilizing the empty NBMO in the presence of a base to form a radical anion which, upon photoexcitation, behaves as a stronger reductant and accomplishes the cleavage of strong C-X (X = Cl, Br, I) bonds under milder reaction conditions. The base was found to be involved in a dual role of electron and hydrogen atom donor. Further, the aryl radical formed by the homolysis of C-X bonds in this technique was captured for the C-C coupling with unactivated arenes.

View Article and Find Full Text PDF

An operationally simple process has been developed for the synthesis of unsymmetrical amines and α-amino carbonyl derivatives in the absence of a catalyst, ligand, oxidant, or any additives. Contrary to known reductive amination methods, this protocol is amenable to substrates containing other reducible groups. This process effectively results in consecutive cleavage and formation of C-N bonds.

View Article and Find Full Text PDF

The development of versatile and mild methodologies for C-N bond construction has always been a hot topic of interest in synthetic organic chemistry. In recent years, electrochemistry has emerged as a promising green and sustainable environmentally benign approach to carry out these transformations under mild conditions utilizing electrons as oxidizing/reducing agents. The current state-of-the-art in combining electrocatalysis with transition metal catalysis has gained significant attention.

View Article and Find Full Text PDF