Increasing evidence suggests that a sedentary lifestyle and a high fat diet (HFD) leads to cardiomyopathy. Moderate exercise ameliorates cardiac dysfunction, however underlying molecular mechanisms are poorly understood. Increased inflammation due to induction of pro-inflammatory cytokine such as tumor necrosis factor-alpha (TNF-α) and attenuation of anti-inflammatory cytokine such as interleukin 10 (IL-10) contributes to cardiac dysfunction in obese and diabetics.
View Article and Find Full Text PDFDiabetes is a rapidly increasing disease that enhances the chances of heart failure twofold to fourfold (as compared to age and sex matched nondiabetics) and becomes a leading cause of morbidity and mortality. There are two broad classifications of diabetes: type1 diabetes (T1D) and type2 diabetes (T2D). Several mice models mimic both T1D and T2D in humans.
View Article and Find Full Text PDFCardiac muscle is unique because it contracts ceaselessly throughout the life and is highly resistant to fatigue. The marvelous nature of the cardiac muscle is attributed to its matrix that maintains structural and functional integrity and provides ambient micro-environment required for mechanical, cellular and molecular activities in the heart. Cardiac matrix dictates the endothelium myocyte (EM) coupling and contractility of cardiomyocytes.
View Article and Find Full Text PDFEmbryonic stem cells (ESC) are totipotent, self-renewing, and clonogenic, having potential to differentiate into a wide variety of cell types. Due to regenerative capability, it has tremendous potential for treating myocardial infarction (death of myocardial tissue) and type 1 diabetes (death of pancreatic beta cells). Understanding the components regulating ESC differentiation is the key to unlock the regenerative potential of ESC-based therapies.
View Article and Find Full Text PDFDiabetic cardiomyopathy is a leading cause of morbidity and mortality, and Insulin2 mutant (Ins2+/-) Akita is a genetic mice model of diabetes relevant to humans. Dicer, miRNAs, and inflammatory cytokines are associated with heart failure. However, the differential expression of miRNAs, dicer, and inflammatory molecules are not clear in diabetic cardiomyopathy of Akita.
View Article and Find Full Text PDFDespite our cognizance that diabetes can enhance the chances of heart failure, causes multiorgan failure,and contributes to morbidity and mortality, it is rapidly increasing menace worldwide. Less attention has been paid to alert prediabetics through determining the comprehensive predictors of diabetic cardiomyopathy (DCM) and ameliorating DCM using novel approaches. DCM is recognized as asymptomatic progressing structural and functional remodeling in the heart of diabetics, in the absence of coronary atherosclerosis and hypertension.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2012
We tested the hypothesis that miR-133a regulates DNA methylation by inhibiting Dnmt-1 (maintenance) and Dnmt-3a and -3b (de novo) methyl transferases in diabetic hearts by using Ins2(+/-) Akita (diabetic) and C57BL/6J (WT), mice and HL1 cardiomyocytes. The specific role of miR-133a in DNA methylation in diabetes was assessed by two treatment groups (1) scrambled, miR-133a mimic, anti-miR-133a, and (2) 5mM glucose (CT), 25 mM glucose (HG) and HG+miR-133a mimic. The levels of miR-133a, Dnmt-1, -3a and -3b were measured by multiplex RT-PCR, qPCR and Western blotting.
View Article and Find Full Text PDFThe contribution of extracellular matrix (ECM) to stem cell survival and differentiation is unequivocal, and matrix metalloproteinase-9 (MMP9) induces ECM turn over; however, the role of MMP9 in the survival and differentiation of cardiac stem cells is unclear. We hypothesize that ablation of MMP9 enhances the survival and differentiation of cardiac stem cells into cardiomyocytes in diabetics. To test our hypothesis, Ins2(+/-) Akita, C57 BL/6J, and double knock out (DKO: Ins2(+/-)/MMP9(-/-)) mice were used.
View Article and Find Full Text PDFDue to inconsistent results of the empirical studies, the relationship between fluctuating asymmetry (FA, a measure of developmental stability) and interspecific hybridization has been the subject of intense debates. In the present study, we have assessed the impact of interspecific hybridization between 2 sibling species of Drosophila: Drosophila ananassae and Drosophila pallidosa on the levels of FA over 3 generations. Trait size of different morphological traits, namely, sternopleural bristle number, wing length (WL), wing to thorax (W/T) ratio, sex comb tooth number (SCTN), and ovariole number differed significantly among parental species and their hybrids of different generations in both the sexes.
View Article and Find Full Text PDF