Publications by authors named "Vishal Vaidya"

Pharmaceutical developers are encouraged to adopt the best practices of being purposefully thoughtful about the use of animals, seeking alternatives wherever possible. They should engage with health authorities to increase their familiarity with the methods, study designs, data outputs, and the context of use for new approach methodologies (NAMs). Although current state of technology does not yet provide adequate models to fully replace in vivo studies, many models are sufficiently good for an augmented approach that will enhance our understanding of in vitro to in vivo correlations and advance the long-term goal of reducing animal use through innovative NAMs.

View Article and Find Full Text PDF

Drug-induced kidney injury (DIKI) is of significant concern, both during drug development and in clinical practice. We report a patient-centric approach for clinical implementation of the FDA-qualified kidney safety biomarker panel, highlighting Phase 1 and 2 trials for candidate therapeutics in Pfizer's portfolio (PFE-1 and PFE-2, respectively) that induced kidney tubular injury in rat toxicity studies. Clusterin (CLU), cystatin-C (CysC), kidney injury molecule-1 (KIM-1), N-acetyl-beta-d-glucosaminidase (NAG), neutrophil gelatinase-associated lipocalin (NGAL), and osteopontin (OPN) were measured in urine samples from (i) Phase 1 healthy volunteers (HVs; n = 12) dosed with PFE-1, (ii) Phase 2 rheumatoid arthritis (RA) patients (n = 266) dosed with PFE-2, (iii) lupus patients on standard-of-care therapies (n = 121), and (iv) healthy volunteers (n = 60).

View Article and Find Full Text PDF

Management of type 2 diabetes mellitus (T2DM) largely relies on medication adherence of individuals with diabetes to achieve optimal glycemic control. The economic burden of diabetes could impede adherence, leading to a reduction in treatment efficacy and increased risk of complications. Furthermore, monotherapy in diabetes is losing traction due to its ineffectiveness in achieving early and sustained optimal glycemic control in a significant proportion of the population.

View Article and Find Full Text PDF

A high incidence of thymic lymphoma has been noted in mice deficient of retinoid-related orphan receptor γ2 (RORγ2), which is required for differentiation of naïve CD4 T cells into T17 cells. Using a RORγ homozygous knockout (KO) mouse model of thymic lymphoma, we characterized this tumor progression and investigated the utility of 5-hydroxymethylcytosine (5hmC) signatures as a non-invasive circulating biomarker for early prediction of malignancy. No evidence for malignancy was noted in the wild-type mice, while primary thymic lymphoma with multi-organ metastasis was observed microscopically in 97% of the homozygous RORγ KO mice.

View Article and Find Full Text PDF

Diagnosis of drug-induced liver injury (DILI) and its distinction from other liver diseases are significant challenges in drug development and clinical practice. Here, we identify, confirm, and replicate the biomarker performance characteristics of candidate proteins in patients with DILI at onset (DO; n = 133) and follow-up (n = 120), acute non-DILI at onset (NDO; n = 63) and follow-up (n = 42), and healthy volunteers (HV; n = 104). Area under the receiver operating characteristic curve (AUC) for cytoplasmic aconitate hydratase, argininosuccinate synthase, carbamoylphosphate synthase, fumarylacetoacetase, fructose-1,6-bisphosphatase 1 (FBP1) across cohorts achieved near complete separation (range: 0.

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-induced dorsal root ganglia (DRG) toxicity has been observed in several nonclinical species, where lesions are characterized by neuronal degeneration/necrosis, nerve fiber degeneration, and mononuclear cell infiltration. As AAV vectors become an increasingly common platform for novel therapeutics, non-invasive biomarkers are needed to better characterize and manage the risk of DRG neurotoxicity in both nonclinical and clinical studies. Based on biological relevance, reagent availability, antibody cross-reactivity, DRG protein expression, and assay performance, neurofilament light chain (NF-L) emerged as a promising biomarker candidate.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is associated with substantial morbidity and mortality. We developed a mouse model that mimics human CKD with inflammation, extracellular matrix deposition, tubulointerstitial fibrosis, increased proteinuria, and associated reduction in glomerular filtration rate over time. Using this model, we show that genetic deficiency of SMOC2 or therapeutic silencing of SMOC2 with small interfering RNAs (siRNAs) after disease onset significantly ameliorates inflammation, fibrosis, and kidney function loss.

View Article and Find Full Text PDF

Evaluate the utility of glutamate dehydrogenase (GLDH) and cardiac troponin I as safety biomarkers, and creatine kinase and muscle injury panel as muscle health biomarkers in Duchenne muscular dystrophy. Data were collected during a Phase II trial of domagrozumab. GLDH was a more specific biomarker for liver injury than alanine aminotransferase.

View Article and Find Full Text PDF

Kidney fibrosis constitutes the shared final pathway of nearly all chronic nephropathies, but biomarkers for the non-invasive assessment of kidney fibrosis are currently not available. To address this, we characterize five candidate biomarkers of kidney fibrosis: Cadherin-11 (CDH11), Sparc-related modular calcium binding protein-2 (SMOC2), Pigment epithelium-derived factor (PEDF), Matrix-Gla protein, and Thrombospondin-2. Gene expression profiles in single-cell and single-nucleus RNA-sequencing (sc/snRNA-seq) datasets from rodent models of fibrosis and human chronic kidney disease (CKD) were explored, and Luminex-based assays for each biomarker were developed.

View Article and Find Full Text PDF

Early diagnosis of drug-induced liver injury (DILI) continues to be a major hurdle during drug development and postmarketing. The objective of this study was to evaluate the diagnostic performance of promising biomarkers of liver injury-glutamate dehydrogenase (GLDH), cytokeratin-18 (K18), caspase-cleaved K18 (ccK18), osteopontin (OPN), macrophage colony-stimulating factor (MCSF), MCSF receptor (MCSFR), and microRNA-122 (miR-122) in comparison to the traditional biomarker alanine aminotransferase (ALT). Biomarkers were evaluated individually and as a multivariate model in a cohort of acetaminophen overdose (n = 175) subjects and were further tested in cohorts of healthy adults (n = 135), patients with liver damage from various causes (n = 104), and patients with damage to the muscle (n = 74), kidney (n = 40), gastrointestinal tract (n = 37), and pancreas (n = 34).

View Article and Find Full Text PDF

Faced with the health and economic consequences of the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the biomedical community came together to identify, diagnose, prevent, and treat the novel disease at breathtaking speeds. The field advanced from a publicly available viral genome to a commercialized globally scalable diagnostic biomarker test in less than 2 months, and first-in-human dosing with vaccines and repurposed antivirals followed shortly thereafter. This unprecedented efficiency was driven by three key factors: 1) international multistakeholder collaborations, 2) widespread data sharing, and 3) flexible regulatory standards tailored to meet the urgency of the situation.

View Article and Find Full Text PDF

Traditional serum biomarkers used to assess skeletal muscle damage, such as activity of creatine kinase (CK), lack tissue specificity and sensitivity, hindering early detection of drug-induced myopathies. Recently, a novel four-factor skeletal muscle injury panel (MIP) of biomarkers consisting of skeletal troponin I (sTnI), CK mass (CKm), fatty-acid-binding protein 3 (Fabp3), and myosin light chain 3, has been shown to have increased tissue specificity and sensitivity in rodent models of skeletal muscle injury. Here, we evaluated if a previously established model of tissue-engineered functional human skeletal muscle (myobundle) can allow detection of the MIP biomarkers after injury or drug-induced myotoxicity in vitro.

View Article and Find Full Text PDF

Kidney fibrosis represents an urgent unmet clinical need due to the lack of effective therapies and an inadequate understanding of the molecular pathogenesis. We have generated a comprehensive and combined multi-omics dataset (proteomics, mRNA and small RNA transcriptomics) of fibrotic kidneys that is searchable through a user-friendly web application: http://hbcreports.med.

View Article and Find Full Text PDF

Limited understanding of species differences in kidney transporters is a critical knowledge gap for prediction of drug-induced acute kidney injury, drug interaction, and pharmacokinetics in humans. Here, we report protein abundance data of 19 transporters in the kidney cortex across five species (human, monkey, dog, rat, and mouse). In general, the abundance of all of the 19 membrane transporters was higher in preclinical species compared with human except for multidrug resistance protein 1 (MDR1), organic cation transporter (OCT) 3, and OCTN1.

View Article and Find Full Text PDF

The failure to predict kidney toxicity of new chemical entities early in the development process before they reach humans remains a critical issue. Here, we used primary human kidney cells and applied a systems biology approach that combines multidimensional datasets and machine learning to identify biomarkers that not only predict nephrotoxic compounds but also provide hints toward their mechanism of toxicity. Gene expression and high-content imaging-derived phenotypical data from 46 diverse kidney toxicants were analyzed using Random Forest machine learning.

View Article and Find Full Text PDF

Drug-induced kidney injury, largely caused by proximal tubular intoxicants, limits development and clinical use of new and approved drugs. Assessing preclinical nephrotoxicity relies on animal models that are frequently insensitive; thus, potentially novel techniques - including human microphysiological systems, or "organs on chips" - are proposed to accelerate drug development and predict safety. Polymyxins are potent antibiotics against multidrug-resistant microorganisms; however, clinical use remains restricted because of high risk of nephrotoxicity and limited understanding of toxicological mechanisms.

View Article and Find Full Text PDF

Background: The death of epithelial cells in the proximal tubules is thought to be the primary cause of AKI, but epithelial cells that survive kidney injury have a remarkable ability to proliferate. Because proximal tubular epithelial cells play a predominant role in kidney regeneration after damage, a potential approach to treat AKI is to discover regenerative therapeutics capable of stimulating proliferation of these cells.

Methods: We conducted a high-throughput phenotypic screen using 1902 biologically active compounds to identify new molecules that promote proliferation of primary human proximal tubular epithelial cells .

View Article and Find Full Text PDF

A scientific session entitled "New Frontiers: Approaches to Understand the Mechanistic Basis of Renal Toxicity" focused on novel biomarkers to monitor kidney injury both preclinically and clinically, as well as providing mechanistic insight of the induced injury. Further, the role and impact of kidney membrane transporters in drug-induced kidney toxicity provided additional considerations when understanding kidney injury and the complex role of drug transporters in either sensitivity or resistance to drug-induced injury. The onset of nephropathy in diabetic patients was also presented, focusing on the quest to discover novel biomarkers that would differentiate diabetic populations more susceptible to nephropathy and renal failure.

View Article and Find Full Text PDF

Pharmaceutical and biotechnology companies routinely use biomarkers to obtain quantitative metrics for drug exposure, efficacy, and safety and to inform clinical trial design with regard to patient selection, treatments, and outcomes. Biomarker science has the unique capability to catalyze precompetitive collaborations between academia, industry, regulatory agencies, and other stakeholders with the ultimate goal of accelerating the delivery of safe and effective medicines to patients, particularly in areas of high unmet need.

View Article and Find Full Text PDF

Phospholipase D4 (PLD4), a single-pass transmembrane glycoprotein, is among the most highly upregulated genes in murine kidneys subjected to chronic progressive fibrosis, but the function of PLD4 in this process is unknown. Here, we found PLD4 to be overexpressed in the proximal and distal tubular epithelial cells of murine and human kidneys after fibrosis. Genetic silencing of PLD4, either globally or conditionally in proximal tubular epithelial cells, protected mice from the development of fibrosis.

View Article and Find Full Text PDF

Background: The prevalence of chronic kidney disease (CKD) is increasing, leading to significant morbidity and mortality. Kidney biopsy remains the gold standard for diagnosing the underlying etiology of CKD, but the procedure carries complication risks. The aim of this study was to identify novel noninvasive biomarkers correlating with kidney function and histopathology in biopsy-proven CKD patients.

View Article and Find Full Text PDF

Organ damage and resulting pathologies often involve multiple deregulated pathways. MicroRNAs (miRNAs) are short, non-coding RNAs that regulate a multitude of genes at the post-transcriptional level. Since their discovery over two decades ago, miRNAs have been established as key players in the molecular mechanisms of mammalian biology including the maintenance of normal homeostasis and the regulation of disease pathogenesis.

View Article and Find Full Text PDF