Publications by authors named "Vishal V Tipparaju"

A miniaturized and multiplexed chemical sensing technology is urgently needed to empower mobile devices and robots for various new applications such as mobile health and Internet of Things. Here, we show that a complementary metal-oxide-semiconductor (CMOS) imager can be turned into a multiplexed colorimetric sensing chip by coating micron-scale sensing spots on the CMOS imager surface. Each sensing spot contains nanocomposites of colorimetric sensing probes and silica nanoparticles that enhance sensing signals by several orders of magnitude.

View Article and Find Full Text PDF

Background & Aims: Resting Energy Expenditure (REE) quantitatively describes the calories used to support body function (e.g. breathing, blood circulation, etc.

View Article and Find Full Text PDF

Transcutaneous oxygen and carbon dioxide provide the status of pulmonary gas exchange and are of importance in diagnosis and management of respiratory diseases. Though significant progress has been made in oximetry, not much has been explored in developing wearable technologies for continuous monitoring of transcutaneous carbon dioxide. This research reports the development of a truly wearable sensor for continuous monitoring of transcutaneous carbon dioxide using miniaturized nondispersive infrared sensor augmented by hydrophobic membrane to address the humidity interference.

View Article and Find Full Text PDF

Bluetooth Low Energy (BLE) plays a critical role in wireless data transmission in wearable technologies. The previous work in this field has mostly focused on optimizing the transmission throughput and power consumption. However, not much work has been reported on a systematic evaluation of the data packet loss of BLE in the wearable healthcare ecosystem, which is essential for reliable and secure data transmission.

View Article and Find Full Text PDF

Accurate assessment of dietary macronutrients intake is critical for the effective management of multiple diseases, such as obesity, diabetes, cardiovascular disease, metabolic disease, and cancer. Conventional self-reporting method is burdensome, inaccurate, and often biased. Though blood analysis and breath analysis can provide evidence-based information, they are either invasive or subject to human errors.

View Article and Find Full Text PDF

Humidity interferes most gas sensors, especially colorimetric sensors. The conventional approaches to minimize the humidity interference in colorimetric gas sensing require using extra components, causing unwanted analytes loss, or limiting the choices of sensing probes to only hydrophobic ones. To explore the possibility of minimizing the humidity interference in a hydrophilic colorimetric sensing system, we have developed a hydrogel-incorporated approach to buffer the humidity influence on the colorimetric gas sensing.

View Article and Find Full Text PDF

Breathing tracking is critical for the assessment of lung functions, exercise physiologies, and energy expenditure. Conventional methods require using a face mask or mouthpiece that is connected to a stationary equipment through a tube, restricting the location, movement, or even the posture. To obtain accurate breathing physiology parameters that represent the true state of the patient during different scenarios, a wearable technology that has less intervention to patient's activities in free-living conditions is highly preferred.

View Article and Find Full Text PDF

Colorimetric sensing technologies have been widely used for both quantitative detection of specific analyte and recognition of a large set of analytes in gas phase, ranging from environmental chemicals to biomarkers in breath. However, the accuracy and reliability of the colorimetric gas sensors are threatened by the humidity interference in different application scenarios. Though substantial progress has been made toward new colorimetric sensors development, unless the humidity interference is well addressed, the colorimetric sensors cannot be deployed for real-world applications.

View Article and Find Full Text PDF

Compared to heart rate, body temperature and blood pressure, respiratory rate is the vital sign that has been often overlooked, largely due to the lack of easily accessible tool for reliable and natural respiration monitoring. To address this unmet need, we designed and built a wearable, stand-alone, fully integrated mask device for accurate tracking of respiration in free-living conditions. The wearable mask device can provide comprehensive respiration information in a wearable and wireless manner.

View Article and Find Full Text PDF

Global industrialization and urbanization have led to increased levels of air pollution. Those with respiratory diseases, such as asthma, are at the highest risk for adverse health effects and reduced quality of life. Studying the relationship between pollutants and symptoms is usually achieved with data from government air quality monitoring stations, but these fail to report the spatial and temporal resolution required to track a person's true exposure, especially when the majority of their time is spent indoors.

View Article and Find Full Text PDF