Publications by authors named "Vishal Soni"

Article Synopsis
  • Skull pin insertion typically leads to increased heart rate and blood pressure, which can negatively impact brain blood flow.
  • A study involving 120 adult patients compared the use of sterile silicone studs (SS) versus lidocaine infiltration at pin sites to see which method better reduced these sympathetic responses.
  • Results showed that the SS group had lower heart rates and blood pressure responses, required less rescue analgesia, and had a lower incidence of complications compared to the lidocaine group, suggesting SS may be a more effective option for managing hemodynamic responses during this procedure.
View Article and Find Full Text PDF

Objective: Application of surgical skull pins causes hemodynamic fluctuations in neurosurgical procedures. To reduce this response, we describe the use of a novel nonpharmacologic method in the form of medical-grade sterile silicone studs to cushion the pressure of the skull pin in the adult population. This study aimed to evaluate the use of conventionally used fentanyl and medical-grade sterile silicone studs for the prevention of hemodynamic response to skull pin insertion.

View Article and Find Full Text PDF

Refractory high-entropy alloys (RHEAs) are promising candidates for next-generation high-temperature materials. RHEAs containing Al, often exhibit a checkered pattern microstructure comprising a combination of disordered BCC and ordered B2 phases. Since the ordered B2 phase is based on the BCC parent matrix, distinguishing these two phases can be rather challenging.

View Article and Find Full Text PDF

This paper reports a novel eutectoid nano-lamellar (FCC + L1)/(BCC + B2) microstructure that has been discovered in a relatively simple AlCoFeNi high entropy alloy (HEA) or complex concentrated alloy (CCA). This novel eutectoid nano-lamellar microstructure presumably results from the complex interplay between Al-mediated lattice distortion (due to its larger atomic radius) in a face-centered cubic (FCC) CoFeNi solid solution, and a chemical ordering tendency leading to precipitation of ordered phases such as L1 and B2. This eutectoid microstructure is a result of solid-state decomposition of the FCC matrix and therefore distinct from the commonly reported eutectic microstructure in HEAs which results from solidification.

View Article and Find Full Text PDF

Recent studies indicate that eutectic high-entropy alloys can simultaneously possess high strength and high ductility, which have potential industrial applications. The present study focuses on AlCoCrFeNi, a lamellar dual-phase (fcc + B2) precipitation-strengthenable eutectic high entropy alloy. This alloy exhibits an fcc + B2 (B2 with bcc nano-precipitates) microstructure resulting in a combination of the soft and ductile fcc phase together with hard B2 phase.

View Article and Find Full Text PDF

Guiding the self-assembly of materials by controlling the shape of the individual particle constituents is a powerful approach to material design. We show that colloidal silica superballs crystallize into canted phases in the presence of depletants. Some of these phases are consistent with the so-called "Λ1" lattice that was recently predicted as the densest packing of superdisks.

View Article and Find Full Text PDF

India has a great wealth of various naturally occurring plant drugs which have great potential pharmacological activities. Datura stramonium (D. stramonium) is one of the widely well known folklore medicinal herbs.

View Article and Find Full Text PDF

The role of Mycobacterium w (Mw) vaccine as an immunomodulator and immunoprophylactant in the treatment of mycobacterial diseases (leprosy and pulmonary tuberculosis) is well established. The fact that it shares common antigens with leishmanial parasites prompted its assessment as an immunostimulant and as an adjunct to known anti-leishmanials that may help in stimulating the suppressed immune status of Leishmania donovani-infected individuals. The efficacy of Mw vaccine was assessed as an immunomodulator, prophylactically either alone or in combination with anti-leishmanial vaccine, as well as therapeutically as an adjunct to anti-leishmanial treatment in L.

View Article and Find Full Text PDF

Trehalose-6-phosphate phosphatase of Brugia malayi (Bm-TPP) represents an attractive vaccine candidate because it is present in all the major life stages of parasite, but is absent in mammals. We have previously cloned, purified and biochemically characterized Bm-TPP. In the present study, we investigated the cross-reactivity of recombinant Bm-TPP (r-Bm-TPP) with the sera of human bancroftian patients belonging to different disease categories.

View Article and Find Full Text PDF

A wide-host-range bacteriophage (phage) PIS136 was isolated from PA136, a strain of Saccharomonospora belonging to the group actinomycetes. Here, we present the genome sequence of the PIS136 phage, which is 94,870 bp long and contains 132 putative coding sequences and one tRNA gene. An IS element-like region with two genes for putative transposases was identified in the genome.

View Article and Find Full Text PDF

Withania somnifera (Ashwagandha) is a plant with known ethnomedicinal properties and its use in Ayurvedic medicine in India is well documented. The present investigation reports on immunomodulatory efficacy of aqueous-ethanol extracts of roots of three selected Withania somnifera chemotypes designated as NMITLI 101R, NMITLI 118R and NMITLI 128R. Each chemotype was administered 10-100 mg/kg orally to BALB/c mice once daily for 14 days.

View Article and Find Full Text PDF

Annona squamosa (AS) has traditionally been used as ethnomedicine. We have earlier extracted and fractionated the twigs of AS based upon its bioactivity and observed its immune potentiating activity that was localized in its three fractions. Present communication deals with the phytochemical analysis and pharmacological investigation of the most active chloroform fraction that led to isolation and identification of a number of compounds whose structures were elucidated using 1D and 2D NMR spectroscopic analysis.

View Article and Find Full Text PDF

Latent Epstein-Barr virus (EBV) infection causes human lymphomas and carcinomas. EBV usually persists as an episome in malignant cells. EBV episome persistence, replication, and gene expression are dependent on EBNA1 binding to multiple cognate sites in oriP.

View Article and Find Full Text PDF

Modulation of immune functions by using herbal plants and their products has become fundamental regime of therapeutic approach. Piper betle Linn. (Piperaceae) is a widely distributed plant in the tropical and subtropical regions of the world and has been attributed as traditional herbal remedy for many diseases.

View Article and Find Full Text PDF

Purpose: The present study was envisaged to evaluate potential of combination therapy comprising of immunomodulator picroliv and antimalarial chloroquine against drug resistant Plasmodium yoelii (P. yoelii) infection in BALB/c mice.

Methods: The immunomodulatory potential of picroliv was established by immunizing animals with model antigen along with picroliv.

View Article and Find Full Text PDF

To test whether transgenic Epstein-Barr virus nuclear antigen 1 (EBNA1) expression in C57BL/6 mouse lymphocytes causes lymphoma, EBNA1 expressed in three FVB lineages at two or three times the level of latent infection was crossed up to six successive times into C57BL/6J mice. After five or six crosses, 14/36, (38%) EBNA1 transgenic mice, 11/31 (36%) littermate EBNA1-negative controls, and 9/25 (36%) inbred C57BL/6J mice housed in the same facility had lymphoma. These data indicate that EBNA1 does not significantly increase lymphoma prevalence in C57BL/6J mice.

View Article and Find Full Text PDF

Epstein-Barr Virus (EBV) Latent Infection Membrane Protein 1 (LMP1) is expressed in all the EBV related malignancies. LMP1 expression is critical for transformation of human B-cells by EBV. LMP1 expression in human B cells induces activation and adhesion molecule expression and cell dumping, which are characteristic of CD40 activated B lymphocytes.

View Article and Find Full Text PDF

WhiB family of protein is emerging as one of the most fascinating group and is implicated in stress response as well as pathogenesis via their involvement in diverse cellular processes. Surprisingly, available in vivo data indicate an organism specific physiological role for each of these proteins. The WhiB proteins have four conserved cysteine residues where two of them are present in a C-X-X-C motif.

View Article and Find Full Text PDF

The Epstein-Barr virus oncoprotein LMP1 has six transmembrane domains (TMs) that enable intermolecular aggregation and constitutive signaling through two C-terminal cytosolic domains. Expression of both TMs 1 and 2 without the C terminus (TM1-2DeltaC) and TMs 3 to 6 fused to the C terminus (TM3-6) results in partial association, which is substantially decreased by TM1 F38WLY41 mutation to A38ALA41. We now investigate whether TM1-2DeltaC can functionally interact with TM3-6.

View Article and Find Full Text PDF

Epstein-Barr virus latent infection integral membrane protein 1 (LMP1) mimics a constitutively active TNF receptor (TNFR). LMP1 has two C-terminal cytosolic domains, transformation effector sites (TES)1 and -2, that engage TNFR-associated factors (TRAFs) and the TNFR-associated death domain protein, respectively, and activate NF-kappaB. NF-kappaB activation is critical for Epstein-Barr virus-infected lymphoblast survival.

View Article and Find Full Text PDF

Relatively little is known about the biochemical mechanisms through which the Epstein-Barr virus latent infection integral membrane protein 1 (LMP1) transmembrane domains cause constitutive LMP1 aggregation and continuous cytoplasmic C terminus-mediated signal transduction. We now evaluate the role of the three consecutive LMP1 hydrophobic transmembrane pairs, transmembrane domains (TM)1-2, TM3-4, and TM5-6, in intermolecular aggregation and NF-kappaB activation. LMP1TM1-2 enabled approximately 40% of wild-type LMP1 cytoplasmic domain-mediated NF-kappaB activation, whereas TM3-4 or TM5-6 assayed in parallel had almost no effect independent of LMP1TM1-2.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1)-induced NF-kappaB activation is important for infected cell survival. LMP1 activates NF-kappaB, in part, by engaging tumor necrosis factor (TNF) receptor-associated factors (TRAFs), which also mediate NF-kappaB activation from LTbetaR and CD40. LTbetaR and CD40 activation of p100/NF-kappaB2 is now known to be NIK/IKKalpha-dependent and IKKbeta/IKKgamma independent.

View Article and Find Full Text PDF