The most prevalent carbohydrate on Earth is cellulose, a polysaccharide composed of glucose units that may be found in diverse sources, such as cell walls of wood and plants and some bacterial and algal species. The inherent availability of this versatile material provides a natural pathway for exploring and identifying novel uses. This study comprehensively analyzes cellulose and its derivatives, exploring their structural and biochemical features and assessing their wide-ranging applications in tissue fabrication, surgical dressings, and pharmaceutical delivery systems.
View Article and Find Full Text PDFPlastics are widely employed in modern civilization because of their durability, mold ability, and light weight. In the recent decade, micro/nanoplastics research has steadily increased, highlighting its relevance. However, contaminating micro/nanoplastics in marine environments, terrestrial ecosystems, and biological organisms is considered a severe threat to the environmental system.
View Article and Find Full Text PDFThe increasing demand for shelters, depleting natural resources, concern for plastic waste, and rising awareness for the environment have attracted the contemporary world towards the recycling of waste plastics for the development of an alternative and sustainable building construction material. The plastics suffer due to their poor strength which can be successfully overcome by the reinforcement of natural fibers. The work aimed to develop and investigate the properties of natural fiber-reinforced composites for structural applications such as floor tiles and pavements.
View Article and Find Full Text PDFOne of the most enticing approaches to environmental restoration and energy conversion is photocatalysis powered by solar light. Traditional photocatalysts have limited practical uses due to inadequate light absorption, charge separation, and unknown reaction mechanisms. Discovering new visible-light photocatalysts and investigating their modification is crucial in photocatalysis.
View Article and Find Full Text PDFPhotocatalytic hybrid carbon nanotubes (CNTs)-mediated Ag-CuBiO/BiWO photocatalyst was fabricated using a hydrothermal technique to effectively eliminate organic pollutants from wastewater. The as-prepared samples were characterized via Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction patterns (XRD), high-resolution transmission electron microscope (HR-TEM), UV-vis Diffuse Reflectance spectrum (UV-Vis DRS), and photoluminescence (PL) studies. The photocatalytic performance of fabricated pristine and hybrid composites was examined by photo-degradation of toxic dye viz.
View Article and Find Full Text PDF