Publications by authors named "Vishal B"

Article Synopsis
  • Researchers have tackled the challenge of crystal growth alignment in low-dimensional perovskites (LDPs) used for solar cells, specifically those with wide band gaps that hinder charge flow.
  • By adding chlorine to the precursor solution, they induced vertical crystal growth which enhances efficiency.
  • This method led to a significant power conversion efficiency of 9.4% and an open circuit voltage of 1.4V, paving the way for innovative solar applications in buildings and indoor energy solutions.
View Article and Find Full Text PDF
Article Synopsis
  • Interface engineering is vital for optimizing perovskite photovoltaics (PVs), focusing on reducing unwanted recombination to improve performance.
  • A novel approach involves creating a photo-ferroelectric perovskite interface by adding an ultrathin ferroelectric layer to enhance charge separation and reduce voltage losses.
  • This innovation has achieved a record open circuit voltage of 1.21 V and a champion efficiency of 24%, demonstrating a promising direction for advanced perovskite PV designs.
View Article and Find Full Text PDF

Two-dimensional (2D) and three-dimensional (3D) perovskite heterostructures have played a key role in advancing the performance of perovskite solar cells. However, the migration of cations between 2D and 3D layers results in the disruption of octahedral networks, leading to degradation in performance over time. We hypothesized that perovskitoids, with robust organic-inorganic networks enabled by edge- and face-sharing, could impede ion migration.

View Article and Find Full Text PDF

The mechanism of conferring salt tolerance by AtTPS9 involves enhanced deposition of suberin lamellae in the Arabidopsis root endodermis, resulting in reduction of Na transported to the leaves. Members of the class I trehalose-6-phosphate synthase (TPS) enzymes are known to play an important role in plant growth and development in Arabidopsis. However, class II TPSs and their functions in salinity stress tolerance are not well studied.

View Article and Find Full Text PDF

Defects at the top and bottom interfaces of three-dimensional (3D) perovskite photoabsorbers diminish the performance and operational stability of perovskite solar cells owing to charge recombination, ion migration and electric-field inhomogeneities. Here we demonstrate that long alkyl amine ligands can generate near-phase-pure 2D perovskites at the top and bottom 3D perovskite interfaces and effectively resolve these issues. At the rear-contact side, we find that the alkyl amine ligand strengthens the interactions with the substrate through acid-base reactions with the phosphonic acid group from the organic hole-transporting self-assembled monolayer molecule, thus regulating the 2D perovskite formation.

View Article and Find Full Text PDF

Evidence of fungal coexistence in humans points towards fungal adaptation to the host environment, like the skin. The human commensal Malassezia has evolved, especially residing in sebum-rich areas of the mammalian body where it can get the necessary nutrition for its survival. This fungus is primarily responsible for skin diseases like Pityriasis versicolor (PV), characterized by hypo or hyperpigmented skin discoloration and erythematous macules.

View Article and Find Full Text PDF
Article Synopsis
  • Carbazole-based self-assembled monolayers (PACz-SAMs) are being used as effective hole-selective layers in perovskite/silicon tandem solar cells, but the impact of the microstructure of the transparent conductive oxide (TCO) on their performance has been underexplored.
  • The study found that variations in the TCO microstructure, particularly in Sn-doped InO (ITO) substrates with different grain sizes, directly affect the work function (WF) shift and local potential distribution of PACz-SAMs.
  • Amorphous TCOs, like amorphous ITO or those with an amorphous NiO layer, show a consistent surface potential, while microcr
View Article and Find Full Text PDF

Thermally evaporated C is a near-ubiquitous electron transport layer in state-of-the-art p-i-n perovskite-based solar cells. As perovskite photovoltaic technologies are moving toward industrialization, batch-to-batch reproducibility of device performances becomes crucial. Here, we show that commercial as-received (99.

View Article and Find Full Text PDF

The properties of layered materials are significantly dependent on their lattice orientations. Thus, the growth of graphene nanowalls (GNWs) on Cu through PECVD has been increasingly studied, yet the underlying mechanisms remain unclear. In this study, we examined the GNWs/Cu interface and investigated the evolution of their microstructure using advanced Scanning transmission electron microscopy and Electron Energy Loss Spectroscopy (STEM-EELS).

View Article and Find Full Text PDF
Article Synopsis
  • Graphene nanowalls (GNW) are nanosheets of graphitic carbon positioned vertically on substrates and are usually produced through plasma-enhanced chemical vapor deposition (PECVD) techniques using materials like copper or nickel.
  • The research describes a method for creating large, patterned GNW films on copper meshes that avoids expensive cleanroom setups and achieves impressive wall heights of around 300 nm, successfully mimicking the mesh's dimensions.
  • These GNW films exhibit unique properties, such as hydrophobicity, which alters the wetting behavior of surfaces, and can be utilized in lithium-ion battery anodes, showcasing their potential in energy storage applications.*
View Article and Find Full Text PDF

Monolithic perovskite/silicon tandem solar cells are of great appeal as they promise high power conversion efficiencies (PCEs) at affordable cost. In state-of-the-art tandems, the perovskite top cell is electrically coupled to a silicon heterojunction bottom cell by means of a self-assembled monolayer (SAM), anchored on a transparent conductive oxide (TCO), which enables efficient charge transfer between the subcells. Yet reproducible, high-performance tandem solar cells require energetically homogeneous SAM coverage, which remains challenging, especially on textured silicon bottom cells.

View Article and Find Full Text PDF

Oxidative stress (OS) and reactive oxygen species (ROS) are one of the main reasons for the multifactorial concern - male infertility. ROS are active components of cellular metabolism that are intrinsic to cellular functioning and are present at minimal and unreactive levels in normal cells. They are an integral component of the sperm developmental physiology, capacitation, and function.

View Article and Find Full Text PDF

An integrated research approach to ensure sustainable rice yield increase of a crop grown by 25% of the world's farmers in 10% of cropland is essential for global food security. Rice, being a global staple crop, feeds about 56% of the world population and sustains 40% of the world's poor. At ~ $200 billion, it also accounts for 13% of the annual crop value.

View Article and Find Full Text PDF

The area of oil foams although important industrially has received little academic attention until the last decade. The early work using molecular surfactants for stabilisation was limited and as such it is difficult to obtain general rules of thumb. Recently however, interest has grown in the area partly fuelled by the understanding gained in the general area of colloidal particles at fluid interfaces.

View Article and Find Full Text PDF

Salinity affects crop productivity worldwide and mangroves growing under high salinity exhibit adaptations such as enhanced root apoplastic barrier to survive under such conditions. We have identified two cytochrome P450 family genes, AoCYP94B3 and AoCYP86B1 from the mangrove tree Avicennia officinalis and characterized them using atcyp94b3 and atcyp86b1, which are mutants of their putative Arabidopsis orthologs and the corresponding complemented lines with A. officinalis genes.

View Article and Find Full Text PDF

Context: There is an alarming rise in the incidence of chronic and recurrent dermatophytosis (CRD) in India. Many factors including tinea unguium may be responsible for it.

Aims: To evaluate various epidemiological and clinical factors including the presence of tinea unguium as a risk factor for CRD.

View Article and Find Full Text PDF

Salinity is an environmental stress that causes decline in crop yield. and other mangroves have adaptations such as ultrafiltration at the roots aided by apoplastic cell wall barriers to thrive in saline conditions. We studied a cytochrome P450 gene from , , and its putative ortholog in Arabidopsis (), , which are involved in apoplastic barrier formation.

View Article and Find Full Text PDF

Expression of AoNHX1 from the mangrove Avicennia increases salt tolerance of rice and Arabidopsis, and specific bHLH transcription factors regulate AtNHX1 and AtNHX6 in Arabidopsis to mediate the salinity response. Improving crop plants to better tolerate soil salinity is a challenging task. Mangrove trees such as Avicennia officinalis have special adaptations to thrive in high salt conditions, which include subcellular compartmentalization of ions facilitated by specialized ion transporters.

View Article and Find Full Text PDF

Class I TREHALOSE-PHOSPHATE-SYNTHASE (TPS) genes affect salinity tolerance and plant development. However, the function of class IITPS genes and their underlying mechanisms of action are unknown. We report the identification and functional analysis of a rice class IITPS gene (OsTPS8).

View Article and Find Full Text PDF

Overall growth and development of a plant is regulated by complex interactions among various hormones, which is critical at different developmental stages. Some of the key aspects of plant growth include seed development, germination and plant survival under unfavorable conditions. Two of the key phytohormones regulating the associated physiological processes are gibberellins (GA) and abscisic acid (ABA).

View Article and Find Full Text PDF

Ds insertion in rice OsPS1-F gene results in semi-dwarf plants with reduced tiller number and grain yield, while genetic complementation with OsPS1-F rescued the mutant phenotype. Photosynthetic electron transport is regulated in the chloroplast thylakoid membrane by multi-protein complexes. Studies about photosynthetic machinery and its subunits in crop plants are necessary, because they could be crucial for yield enhancement in the long term.

View Article and Find Full Text PDF

A 55-year-old male presented with asymptomatic extensive skin lesions since one year. He was found to have diffuse lesions involving the face, trunk, arms, and thighs along with symmetric peripheral nerve thickening. Bacteriological and histopathological examination confirmed lepromatous leprosy.

View Article and Find Full Text PDF