Publications by authors named "Visar Belegu"

Neurological recovery in individuals with spinal cord injury (SCI) is multifaceted, involving mechanisms such as remyelination and perilesional spinal neuroplasticity, with cortical reorganization being one contributing factor. Cortical reorganization, in particular, can be evaluated through network (graph) analysis of interregional functional connectivity. This study aimed to investigate cortical reorganization patterns in persons with chronic SCI using a multilayer community detection approach on resting-state functional MRI data.

View Article and Find Full Text PDF

Neonatal hypoxic-ischemic encephalopathy (NHIE) induces severe cerebral damage and neurological dysfunction, with seldom effective therapy. Aquaporin-4 (AQP4) is involved in aggravating brain damage induced by NHIE. This study aimed to investigate the role of AQP4 underlying the pathogenesis of NHIE.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a fatal disease that can cause severe disability. Cortical reorganization subserved the recovery of spontaneous function after SCI, although the potential molecular mechanism in this remote control is largely unknown. Therefore, using proteomics analysis, RNA interference/overexpression, and CRISPR/Cas9 and , we analyzed how the molecular network functions in neurological improvement, especially in the recovery of motor function after spinal cord transection (SCT) via the remote regulation of cerebral cortex.

View Article and Find Full Text PDF

Spinal cord injury (SCI) causes partial or complete damage to sensory and motor pathways and induces immediate changes in cortical function. Current rehabilitative strategies do not address this early alteration, therefore impacting the degree of neuroplasticity and subsequent recovery. The following study aims to test if a non-invasive brain stimulation technique such as repetitive transcranial magnetic stimulation (rTMS) is effective in promoting plasticity and rehabilitation, and can be used as an early intervention strategy in a rat model of SCI.

View Article and Find Full Text PDF

A platform for studying spinal cord organogenesis in vivo where embryonic stem cell (ESC)-derived neural progenitor cells (NPC) self-organize into spinal cord-like tissue after transplantation in subarachnoid space of the spinal cord has been described. We advance the applicability of this platform by imaging in vivo the formed graft through T2w magnetic resonance imaging (MRI). Furthermore, we used diffusion tensor imaging (DTI) to verify the stereotypical organization of the graft showing that it mimics the host spinal cord.

View Article and Find Full Text PDF

Purpose: We aimed to identify non-invasive imaging parameters that can serve as biomarkers for the integrity of the spinal cord, which is paramount to neurological function. Diffusion tensor imaging (DTI) indices are sensitive to axonal and myelin damage, and have strong potential to serve as such biomarkers. However, averaging DTI indices over large regions of interest (ROIs), a common approach to analyzing the images of injured spinal cord, leads to loss of subject-specific information.

View Article and Find Full Text PDF

Myelination in the central nervous system (CNS) is a dynamic process that includes birth of oligodendrocyte progenitor cells (OPCs), their differentiation into oligodendrocytes, and ensheathment of axons. Regulation of myelination by neuronal activity has emerged as a new mechanism of CNS plasticity. Activity-dependent myelination has been shown to regulate sensory, motor, and cognitive functions.

View Article and Find Full Text PDF

Patients with tumors that metastasize to bone frequently suffer from debilitating pain, and effective therapies for treating bone cancer are lacking. This study employed a novel strategy in which herpes simplex virus (HSV) carrying a small interfering RNA (siRNA) targeting platelet-derived growth factor (PDGF) was used to alleviate bone cancer pain. HSV carrying PDGF siRNA was established and intrathecally injected into the cavum subarachnoidale of animals suffering from bone cancer pain and animals in the negative group.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is frequently accompanied by a degree of spontaneous functional recovery. The underlying mechanisms through which such recovery is generated remain elusive. In this study, we observed a significant spontaneous motor function recovery 14 to 28 days after spinal cord transection (SCT) in rats.

View Article and Find Full Text PDF

Resting-state functional MRI (rs-fMRI) permits study of the brain's functional networks without requiring participants to perform tasks. Robust changes in such resting state networks (RSNs) have been observed in neurologic disorders, and rs-fMRI outcome measures are candidate biomarkers for monitoring clinical trials, including trials of extended therapeutic interventions for rehabilitation of patients with chronic conditions. In this study, we aim to present a unique longitudinal dataset reporting on a healthy adult subject scanned weekly over 3.

View Article and Find Full Text PDF

Spinal cord injury (SCI) results in a series of severe dysfunction of sensory and motor functions, while the molecular mechanisms that cause these dysfunctions remain elusive. Using proteomics technology, Western blot (WB), and immunohistochemistry (IHC), we found endoplasmic reticulum protein 29 (ERp29) was substantially downregulated in the motor cortex 3 days postoperation (dpo) after spinal cord transection (SCT, T10) followed by a gradual recovery 28 dpo. IHC showed that ERp29 is expressed in cortical neurons.

View Article and Find Full Text PDF

Background: We sought to investigate the effects of co-grafting neural stem cells (NSCs) with olfactory ensheathing cells (OECs) on neurological behavior in rats subjected to traumatic brain injury (TBI) and explore underlying molecular mechanisms.

Methods: TBI was established by percussion device made through a weight drop (50 g) from a 30 cm height. Cultured NSCs and OECs isolated from rats were labeled by Hoechst 33342 (blue) and chloromethyl-benzamidodialkyl carbocyanine (CM-Dil) (red), respectively.

View Article and Find Full Text PDF

Neurological recovery in patients with severe spinal cord injury (SCI) is extremely rare. We have identified a patient with chronic cervical traumatic SCI, who suffered a complete loss of motor and sensory function below the injury for 6 weeks after the injury, but experienced a progressive neurological recovery that continued for 17 years. The extent of the patient's recovery from the severe trauma-induced paralysis is rare and remarkable.

View Article and Find Full Text PDF

CNS damage often results in demyelination of spared axons due to oligodendroglial cell death and dysfunction near the injury site. Although new oligodendroglia are generated following CNS injury and disease, the process of remyelination is typically incomplete resulting in long-term functional deficits. Chondroitin sulfate proteoglycans (CSPGs) are upregulated in CNS grey and white matter following injury and disease and are a major component of the inhibitory scar that suppresses axon regeneration.

View Article and Find Full Text PDF

Chronic neuropathic pain is a common and debilitating consequence of spinal cord injury (SCI). In a rat contusion injury model, we observed that chronic neuropathic pain is present on day 7 after SCI and persists for the entire 56-day observation period. However, currently available pain therapies are inadequate for SCI-induced neuropathic pain.

View Article and Find Full Text PDF

Axon demyelination contributes to the loss of sensory and motor function following injury or disease in the central nervous system. Numerous reports have demonstrated that myelination can be achieved in neuron/oligodendrocyte co-cultures. However, the ability to selectively treat neuron or oligodendrocyte (OL) cell bodies in co-cultures improves the value of these systems when designing mechanism-based therapeutics.

View Article and Find Full Text PDF

Damage to specific white matter tracts within the spinal cord can often result in the particular neurological syndromes that characterize myelopathies such as traumatic spinal cord injury. Noninvasive visualization of these tracts with imaging techniques that are sensitive to microstructural integrity is an important clinical goal. Diffusion tensor imaging (DTI)- and magnetization transfer (MT)-derived quantities have shown promise in assessing tissue health in the central nervous system.

View Article and Find Full Text PDF

Although neural regeneration is an active research field today, no current treatments can aid regeneration after spinal cord injury. This article reviews the feasibility of spinal cord repair and provides an overview of the range of strategies scientists are taking toward regeneration. The major focus of this article is the future role of stem cell transplantation and similar rehabilitative restorative approaches designed to optimize spontaneous regeneration by mobilizing endogenous stem cells and facilitating other cellular mechanisms of regeneration, such as axonal growth and myelination.

View Article and Find Full Text PDF

The use of cell fusion to study exchange of information at the molecular level between the nucleus and the cytoplasm of cells during regulation of gene expression was pioneered by Harris and Ringertz more than three decades ago. The ability to make heterokaryons with cells from different species or genetic strains is especially useful because genetic differences in gene products allow the origin of trans-acting regulatory factors to be determined. Heterokaryons between adult nucleated erythroid cells of one species and embryonic/larval nucleated erythroid cells of another species, for example, show cross-induction between the two types of nuclei, resulting in reprogramming of the adult nucleus to embryonic/larval globin gene expression and/or reprogramming of the embryonic/larval cell nucleus to adult globin expression.

View Article and Find Full Text PDF

Since the discovery in the 1960s that remyelination can occur in the damaged central nervous system (CNS) (Bunge et al. 1961), there has been much progress in understanding the cellular and molecular biology of oligodendroglia and the factors that regulate their propagation, migration, differentiation, maturation, and ability to myelinate nerve axons. More recently, greater understanding of disease states and the role of oligodendrocytes in remyelination have sparked tremendous interest in this once obscure field.

View Article and Find Full Text PDF