The vast potential of human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) in preclinical models of cardiac pathologies, precision medicine, and drug screening remains to be fully realized because hiPSC-CMs are immature without adult-like characteristics. Here, we present a method to accelerate hiPSC-CM maturation on a substrate, cardiac mimetic matrix (CMM), mimicking adult human heart matrix ligand chemistry, rigidity, and submicron ultrastructure, which synergistically mature hiPSC-CMs rapidly within 30 days. hiPSC-CMs matured on CMM exhibit systemic transcriptomic maturation toward an adult heart state, are aligned with high strain energy, metabolically rely on oxidative phosphorylation and fatty acid oxidation, and display enhanced redox handling capability, efficient calcium handling, and electrophysiological features of ventricular myocytes.
View Article and Find Full Text PDFNavigation through a dense, physically confining extracellular matrix is common in invasive cell spread and tissue reorganization but is still poorly understood. Here, we show that this migration is mediated by cyclic changes in the activity of a small GTPase RhoA, which is dependent on the oscillatory changes in the activity and abundance of the RhoA guanine nucleotide exchange factor, GEF-H1, and triggered by a persistent increase in the intracellular Ca levels. We show that the molecular clock driving these cyclic changes is mediated by two coupled negative feedback loops, dependent on the microtubule dynamics, with a frequency that can be experimentally modulated based on a predictive mathematical model.
View Article and Find Full Text PDFTumor dissemination into the surrounding stroma is the initial step in a metastatic cascade. Invasion into stroma is a non-autonomous process for cancer, and its progression depends upon the stage of cancer, as well as the cells residing in the stroma. However, a systems framework to understand how stromal fibroblasts resist, collude, or aid cancer invasion has been lacking, limiting our understanding of the role of stromal biology in cancer metastasis.
View Article and Find Full Text PDFHow cells with diverse morphologies and cytoskeletal architectures modulate their mechanical behaviors to drive robust collective motion within tissues is poorly understood. During wound repair within epithelial monolayers , cells coordinate the assembly of branched and bundled actin networks to regulate the total mechanical work produced by collective cell motion. Using traction force microscopy, we show that the balance of actin network architectures optimizes the wound closure rate and the magnitude of the mechanical work.
View Article and Find Full Text PDFSerotonin (5-HT) is known to increase the rate of growth cone advance via cofilin-dependent increases in retrograde actin network flow and nonmuscle myosin II activity. We report that myosin II activity is regulated by PKC during 5-HT responses and that PKC activity is necessary for increases in traction force normally associated with these growth responses. 5-HT simultaneously induces cofilin-dependent decreases in actin network density and PKC-dependent increases in point contact density.
View Article and Find Full Text PDFCollective cell migration in cohesive units is vital for tissue morphogenesis, wound repair, and immune response. While the fundamental driving forces for collective cell motion stem from contractile and protrusive activities of individual cells, it remains unknown how their balance is optimized to maintain tissue cohesiveness and the fluidity for motion. Here we present a cell-based computational model for collective cell migration during wound healing that incorporates mechanochemical coupling of cell motion and adhesion kinetics with stochastic transformation of active motility forces.
View Article and Find Full Text PDFDevelopmental studies and 3D model systems show that the production and engagement of extracellular matrix (ECM) often precede stem cell differentiation. Yet, unclear is how the ECM triggers signaling events in sequence to accommodate multistep process characteristic of differentiation. Here, we employ transcriptome profiling and advanced imaging to delineate the specificity of ECM engagement to particular differentiation pathways and to determine whether specificity in this context is a function of long-term ECM remodeling.
View Article and Find Full Text PDFIntroduction: Migration mis-regulation is a hallmark of cancer, and remains an important problem in cancer biology. We postulate the needs for better in vitro models to understand the details of cell-matrix interactions. Here, we utilized multiphoton excited (MPE) photochemistry to fabricate models to systematically study migration dynamics operative in breast and ovarian cancer.
View Article and Find Full Text PDFRationale: Conventional 3-dimensional (3D) printing techniques cannot produce structures of the size at which individual cells interact.
Objective: Here, we used multiphoton-excited 3D printing to generate a native-like extracellular matrix scaffold with submicron resolution and then seeded the scaffold with cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human-induced pluripotent stem cells to generate a human-induced pluripotent stem cell-derived cardiac muscle patch (hCMP), which was subsequently evaluated in a murine model of myocardial infarction.
Methods And Results: The scaffold was seeded with ≈50 000 human-induced pluripotent stem cell-derived cardiomyocytes, smooth muscle cells, and endothelial cells (in a 2:1:1 ratio) to generate the hCMP, which began generating calcium transients and beating synchronously within 1 day of seeding; the speeds of contraction and relaxation and the peak amplitudes of the calcium transients increased significantly over the next 7 days.
Haptotaxis, , cell migration in response to adhesive gradients, has been previously implicated in cancer metastasis. A better understanding of cell migration dynamics and their regulation could ultimately lead to new drug targets, especially for cancers with poor prognoses, such as ovarian cancer. Haptotaxis has not been well-studied due to the lack of biomimetic, biocompatible models, where, for example, microcontact printing and microfluidics approaches are primarily limited to 2D surfaces and cannot produce the 3D submicron features to which cells respond.
View Article and Find Full Text PDFMultiphoton excited photochemistry is a powerful 3D fabrication tool that produces sub-micron feature sizes. Here we exploit the freeform nature of the process to create models of the extracellular matrix (ECM) of several tissues, where the design blueprint is derived directly from high resolution optical microscopy images (e.g.
View Article and Find Full Text PDFConcentration gradients of ECM proteins play active roles in many areas of cell biology including wound healing and metastasis. They may also form the basis of tissue engineering scaffolds, as these can direct cell adhesion and migration and promote new matrix synthesis. To better understand cell-matrix interactions on attractive gradients, we have used multiphoton excited (MPE) photochemistry to fabricate covalently linked micro-structured gradients from fibronectin (FN).
View Article and Find Full Text PDFThe extracellular matrix (ECM) of the embryonic heart guides assembly and maturation of cardiac cell types and, thus, may serve as a useful template, or blueprint, for fabrication of scaffolds for cardiac tissue engineering. Surprisingly, characterization of the ECM with cardiac development is scattered and fails to comprehensively reflect the spatiotemporal dynamics making it difficult to apply to tissue engineering efforts. The objective of this work was to define a blueprint of the spatiotemporal organization, localization, and relative amount of the four essential ECM proteins, collagen types I and IV (COLI, COLIV), elastin (ELN), and fibronectin (FN) in the left ventricle of the murine heart at embryonic stages E12.
View Article and Find Full Text PDFSecond Harmonic Generation (SHG) microscopy has been previously used to describe the morphology of collagen in the extracellular matrix (ECM) in different stages of invasion in breast cancer. Here this concept is extended by using SHG to provide quantitative discrimination of self-assembled collagen gels, consisting of mixtures of type I (Col I) and type V (Col V) isoforms which serve as models of changes in the ECM during invasion in vivo. To investigate if SHG is sensitive to changes due to Col V incorporation into Col I fibrils, gels were prepared with 0-20% Col V with the balance consisting of Col I.
View Article and Find Full Text PDF