The first-in-patient (FIP) starting dose for oncology agents should be reasonably safe and provide potential therapeutic benefit to the patient. For late-stage oncology patients, this dose is often based on the ICH S9 guidance, which was developed primarily based on experience with cytotoxic chemotherapeutic agents using the rodent STD or non-rodent HNSTD and an appropriate safety factor. With the increase in molecularly targeted chemotherapeutics, it is prudent to re-evaluate how the FIP dose is derived to ensure that the appropriate balance between risk and therapeutic benefit to the patient is achieved.
View Article and Find Full Text PDFToxicity studies in juvenile animals (JAS) are sometimes performed to support clinical trials in pediatric oncology patients, and there are differing conclusions on the value of JAS for pediatric drug development. This manuscript provides a review of the pediatric clinical data for 25 molecularly-targeted and 4 biologic anticancer therapeutics. Other publications that evaluated the value of JAS in pediatric drug development focus on differences in toxicity between juvenile animals and adult animals.
View Article and Find Full Text PDFIn the early 1900s, the abnormal toxicity test (ATT) was developed as an auxiliary means to ensure safe and consistent antiserum production. Today, the ATT is utilized as a quality control (QC) release test according to pharmacopoeial or other regulatory requirements. The study design has not been changed since around 1940.
View Article and Find Full Text PDFRosiglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist of the thiazolidinedione class, is a major insulin-sensitizing drug widely used to treat type-2 diabetes. Rosiglitazone causes myocardial hypertrophy in rodents and increases the risk of cardiac events in man. To better characterize its cardiac effects, male Wistar rats were orally administered 0, 10 or 80 mg/kg/day rosiglitazone.
View Article and Find Full Text PDFGender is known to play a role in the bioavailability, metabolism, and lethality of many toxic substances. This study was conducted to investigate the influence of gender on cocaine hepatotoxicity (CH) and lipopolysaccharide (LPS) potentiation of CH. Male and female CF-1 mice were orally administered 20 mg/kg body weight cocaine hydrochloride once daily for 7 days.
View Article and Find Full Text PDFToxicol Mech Methods
October 2012
Oral cocaine administration results in hepatic necrosis, increased plasma transaminase concentration, and decreased antioxidative capability, which is potentiated by lipopolysaccharide (LPS) in male CF-1 mice. Females administered the same treatment regimen display none of the hepatotoxic effects seen in their male counterparts. This study was conducted to further dissect the mechanism responsible for this gender difference in cocaine hepatotoxicity (CH) and lipopolysaccharide potentiation of CH.
View Article and Find Full Text PDFHepatocellular damage is thought to occur as a result of cytochrome P450-mediated oxidation of cocaine to norcocaine (NC), a precursor of the hepatotoxic nitrosonium ion. However, this damage occurs only in male mice, with females exhibiting minimal biochemical and histological signs of hepatocellular stress. The objective of this study was to determine the plasma time course and tissue disposition of cocaine and its metabolites to further investigate the role that metabolism may play in the gender difference observed.
View Article and Find Full Text PDFThis study was conducted to investigate the effect of a 7-day treatment as well as the influence of gender on cocaine hepatotoxicity (CH). Lipopolysaccharide (LPS) potentiation of CH was also investigated. Male and female CF-1 mice were orally administered 20 mg/kg body weight cocaine hydrochloride once daily for 7 days.
View Article and Find Full Text PDF