Publications by authors named "Visakorpi T"

Article Synopsis
  • Prostate cancer treatment resistance is a major challenge, with genomic studies revealing how cancer cells evade therapies, yet the tumor microenvironment's (TME) role remains unclear.
  • A study using advanced techniques on samples from 120 patients offers a detailed transcriptomic profile of the prostate TME throughout the treatment process.
  • The research highlights a unique cell type called club-like cells that interact with the immune system, suggesting their involvement in inflammation and resistance to androgen deprivation therapy, indicating they could be potential targets for new treatments.
View Article and Find Full Text PDF

While hundreds of cancer-associated long noncoding RNAs (lncRNAs) have been discovered, their functional role in cancer cells is still largely a mystery. An increasing number of lncRNAs are recognized to function in the cytoplasm, e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer cells experience significant changes in gene expression and epigenetics, including the abnormal activation of certain tissue-specific genes.
  • The RNA helicase DDX4 forms structures similar to germ granules in tumors but not in cultured cancer cells, containing proteins linked to RNA and splicing.
  • The absence of DDX4 in cancer cells alters gene expression, reduces cancer growth and invasiveness, and is associated with poorer patient outcomes in certain cancers like head and neck squamous cell carcinoma and advanced prostate cancer.
View Article and Find Full Text PDF
Article Synopsis
  • - The study examines the genomic heterogeneity of prostate cancer and its impact on treatment resistance, suggesting that incorporating evolutionary principles into clinical trials could provide valuable insights for therapy strategies.
  • - Researchers analyzed whole genome data and 3D anatomical structures from two patients with high-risk prostate cancer, using advanced tools to map tumor origins, genetic mutations, and metastasis patterns.
  • - Results indicate that specific mutations and evolutionary patterns significantly influence cancer progression and metastasis, highlighting the potential for evolutionary analysis to inform therapy choices in prostate cancer patients.
View Article and Find Full Text PDF

Prostate cancer (PCa) is the second-most common cause of male cancer-related death in western industrialized countries, and the emergence of metastases is a key challenge in the treatment of PCa. Accumulating studies have shown that long noncoding RNAs (lncRNAs) play an important role in the regulation of diverse cellular and molecular processes during the development and progression of cancer. Here, we utilized a unique cohort of castration-resistant prostate cancer metastases (mCRPC) and corresponding localized tumors and RNA sequencing (RNA-seq).

View Article and Find Full Text PDF

Prostate cancer research suffers from the lack of suitable models to study the role of normal cells in prostate carcinogenesis. To address this challenge, we developed a cell line model mimicking luminal prostate epithelial cells by modifying the immortalized prostate epithelial cell line RWPE-1 to constitutively express the androgen receptor (AR). RWPE-1-AR cells express known AR target genes, and exhibit coexpression of luminal and basal markers characteristic of transient amplifying cells, and an RNA signature resembling prostate luminal progenitor cells.

View Article and Find Full Text PDF

miR-32 is an androgen receptor (AR)-regulated microRNA, expression of which is increased in castration-resistant prostate cancer (PC). We have previously shown that overexpression of miR-32 in the prostate of transgenic mice potentiates proliferation in prostate epithelium. Here, we set out to determine whether increased expression of miR-32 influences growth or phenotype in prostate adenocarcinoma in vivo.

View Article and Find Full Text PDF

Background: Intraductal carcinoma and cribriform (IDC/C) tumor features are well-established prognosticators of biochemical recurrence (BCR), metastasis, and prostate cancer (PCa)-specific mortality. However, approximately 70% of PCa patients undergoing a radical prostatectomy are IDC/C negative, yet up-to 20% of these patients progress and experience BCR. Thus, tumor histopathologic characteristics such as IDC/C alone are limited in their ability to predict disease progression.

View Article and Find Full Text PDF

Histological changes in tissue are of primary importance in pathological research and diagnosis. Automated histological analysis requires ability to computationally separate pathological alterations from normal tissue. Conventional histopathological assessments are performed from individual tissue sections, leading to the loss of three-dimensional context of the tissue.

View Article and Find Full Text PDF

Prostate cancer is heterogeneous and patients would benefit from methods that stratify those who are likely to respond to systemic therapy. Here, we employ single-cell assays for transposase-accessible chromatin (ATAC) and RNA sequencing in models of early treatment response and resistance to enzalutamide. In doing so, we identify pre-existing and treatment-persistent cell subpopulations that possess regenerative potential when subjected to treatment.

View Article and Find Full Text PDF

Treatment of prostate cancer confronts resistance to androgen receptor (AR)-targeted therapies. AR-associated coregulators and chromatin proteins hold a great potential for novel therapy targets. Here, we employed a powerful chromatin-directed proteomics approach termed ChIP-SICAP to uncover the composition of chromatin protein network, the chromatome, around endogenous AR in castration resistant prostate cancer (CRPC) cells.

View Article and Find Full Text PDF

The three oncogenic PIM family kinases have been implicated in the development of prostate cancer (PCa). The aim of this study was to examine the mRNA and protein expression levels of PIM1, PIM2, and PIM3 in PCa and their associations with the MYC and ERG oncogenes. We utilized prostate tissue specimens of normal, benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN), untreated PCa, and castration-resistant prostate cancer (CRPC) for immunohistochemical (IHC) analysis.

View Article and Find Full Text PDF

The evolutionary progression from primary to metastatic prostate cancer is largely uncharted, and the implications for liquid biopsy are unexplored. We infer detailed reconstructions of tumor phylogenies in ten prostate cancer patients with fatal disease, and investigate them in conjunction with histopathology and tumor DNA extracted from blood and cerebrospinal fluid. Substantial evolution occurs within the prostate, resulting in branching into multiple spatially intermixed lineages.

View Article and Find Full Text PDF

Objective: Plasma, but also urine sample could represent a simple liquid biopsy for ovarian cancer biomarker detection. The miRNA-200 family has been shown to be dysregulated in ovarian cancer. The aim of this study was to isolate three members of miR-200 family from tumor tissue, plasma and urine of high-grade serous ovarian cancer patients in comparison with samples from patients with benign ovarian tumors.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) play pivotal roles in cancer development and progression, and some function in a highly cancer-specific manner. However, whether the cause of their expression is an outcome of a specific regulatory mechanism or nonspecific transcription induced by genome reorganization in cancer remains largely unknown. Here, we investigated a group of lncRNAs that we previously identified to be aberrantly expressed in prostate cancer (PC), called TPCATs.

View Article and Find Full Text PDF

Purpose: Reliable molecular diagnostic tools are still unavailable for making informed treatment decisions and monitoring the response in patients with castration resistant prostate cancer. We evaluated the significance of whole blood circulating androgen receptor transcripts of full length (AR-FL) and splice variants (AR-V1, AR-V3 and AR-V7) as biomarkers of abiraterone acetate treatment resistance in patients with castration resistant prostate cancer.

Materials And Methods: After retrospective analysis in 112 prostate specimens AR-FL, AR-V1, AR-V3 and AR-V7 were evaluated in 185 serial blood samples, prospectively collected from 102 patients with castration resistant prostate cancer before and during abiraterone acetate therapy via reverse transcription quantitative polymerase chain reaction.

View Article and Find Full Text PDF

Background: Progression of prostate cancer from benign local tumors to metastatic carcinomas is a multistep process. Here we have investigated the signaling pathways that support migration and invasion of prostate cancer cells, focusing on the role of the NFATC1 transcription factor and its post-translational modifications. We have previously identified NFATC1 as a substrate for the PIM1 kinase and shown that PIM1-dependent phosphorylation increases NFATC1 activity without affecting its subcellular localization.

View Article and Find Full Text PDF

Deregulation of fibroblast growth factor receptor (FGFR) signaling is tightly associated with numerous human malignancies, including cancer. Indeed, FGFR inhibitors are being tested as anti-tumor drugs in clinical trials. Among gliomas, FGFR3 fusions occur in IDH wild-type diffuse gliomas leading to high FGFR3 protein expression and both, FGFR3 and FGFR1, show elevated expression in aggressive ependymomas.

View Article and Find Full Text PDF

PARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote aggressive phenotypes.

View Article and Find Full Text PDF

Ovarian cancer has the highest mortality rate of all gynecologic malignancies. Identification of new biomarkers is highly needed due to its late diagnosis and high recurrence rate. The objective of this study was to identify mechanisms of therapy resistance and potential biomarkers by analyzing mRNA and protein expression from samples derived from patients with platinum-sensitive and -resistant ovarian cancer (total cohort n = 53).

View Article and Find Full Text PDF

Background: A significant subset of prostate cancer (PC) patients with a castration-resistant form of the disease (CRPC) show primary resistance to androgen receptor (AR)-targeting drugs developed against CRPC. As one explanation could be the expression of constitutively active androgen receptor splice variants (AR-Vs), our current objectives were to study AR-Vs and other AR aberrations to better understand the emergence of CRPC.

Methods: We analysed specimens from different stages of prostate cancer by next-generation sequencing and immunohistochemistry.

View Article and Find Full Text PDF